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Abstract

Magic: The Gathering is a collectible card game that is
traditionally a human-based game: two or more players
compete with their own custom deck to eliminate their
opponent(s). Magic has again surged in popularity with
the release of Magic:Arena, a digital substitute for the
physical card game. What Magic:Arena lacks is mean-
ingful gameplay with a competitive, intelligent agent.
We propose a strategy-based framework for basic de-
cision making in Magic: The Gathering. We describe
these procedures and provide experimental evidence for
the effectiveness of our approach.

1 Introduction
Magic: The Gathering (Magic, for short) is viewed as the
pinnacle of competitive collectible card games due to its
long-lasting success. Wizards of the Coast, designers and
publishers of Magic, recognized the early success of the
game with both gamers and collectors. Other gaming com-
panies recognized this success in the 1990s with different
competing efforts; many were unsuccessful, while some
gained traction. More than two decades later, Magic is
still considered to be the leader in competitive card games
even in the digital realm with their proprietary software
Magic:Arena. Games such as Hearthstone and Legends
of Runeterra have made inroads against Magic, but the
longevity, richness, and classic nature of Magic always
seems to win even with the digital client Magic:Arena. As
boardgames and card games continue to be digitized, there
is often a desire to make such games playable for a single
player. That is, digital game clients need to offer a com-
petitive agent player for realistic competitive play. This is
a particularly difficult problem since Magic: The Gather-
ing has been shown to be Turing complete (Churchill, Bi-
derman, and Herrick 2019).

In this paper we summarize Magic decks and gameplay
(Section 2) and motivate development of a decision-making
framework in Section 3. In Section 4, we describe our
framework and the algorithms for the decisions it can make.
We conclude with brief experimental analyses in Section 5
and a discussion of limitations and future considerations
(Section 7).
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2 Magic Decks and Gameplay
Magic is a rich and complex game: the comprehensive rule
set (Wizards of the Coast 2020c) is more than 200 pages and
is consistently updated and expanded. In this section we give
a terse overview of the game and how it is played.

The Goal. The overarching goal in a game of Magic is to
reduce an opponent’s life total from 20 down to 0. Life is
deducted from a player for many reasons including, but not
limited to, damage from spells and creatures.

Decks. In this paper we consider constructed best-of-one
(BO1) games. In this format, a deck consists of at least 60
cards. Except for basic lands, a constructed deck may not
have more than 4 copies of any card. Since Magic is a con-
sistently evolving game, our discussions will consider cards
that were in the Standard format on Magic:Arena (Wizards
of the Coast 2020b) when the research was completed, but
are now classified as Historic. A deck of 60 cards commonly
contains between 23 and 27 lands with the remaining cards
being creatures, enchantments, artifacts, and other spells.
Land cards supply the player with ‘mana’: the resource used
to ‘cast’ spells. All cards other than land are considered
spells and thus have a corresponding casting cost: resources
a player must pay to play a card.

The game of Magic uses five colors: Black (B), Blue (U),
Green (G), Red (R), and White (W); each of the five col-
ors maintains a trademarked symbol which we do not use
here. Mana is created by ‘tapping’ (turning a card side-
ways) lands that produce the corresponding color mana (e.g.,
swamps produce black mana, plains produce white mana,
etc.). There are many spells that require ‘generic’ mana to
be cast: mana of any color can be used to pay for such mana
costs. For example, the enchantment Cavalcade of Calamity
(Wizards of the Coast 2020a) can be cast with 1 generic and
1 red mana. We abbreviate the casting cost of Cavalcade of
Calamity 1R and say it has a converted mana cost (CMC)
of 2.

Gameplay. In a BO1 game there are two players. Each
player is unaware of the contents of the other player’s deck,
although traditionally decks follow a ‘meta’ or common
deck-type. Both players individually shuffle the contents of
their decks and draw the top 7 cards. A player is then tasked
with a decision to keep their current hand or mulligan by
reshuffling their hand and library together and drawing 7
new cards. We assume the use of the London mulligan in



Figure 1: A summary of the phases in a Magic turn.

which a player places m cards on the bottom of their deck,
where m is the number of times they have performed a mul-
ligan (e.g., m = 0 if a player does not mulligan, but if a
player mulligans once, m = 1 and the player will begin
with 7−m = 6 cards in their opening hand).

We do not describe all the intricacies of a turn in
Magic and instead focus on a high-level overview of the
phases depicted in Figure 1. Each turn begins with play-
ers ‘untapping’cards, which allows the player to use these
resources again, and drawing one card from their deck (the
first player does not draw a card on their first turn). In the
first main phase, the player may play a land as well as any
spells in which they have sufficient mana. The combat phase
allows the current player to initiate combat against the op-
ponent by choosing attacking creatures. The opponent then
decides how to use their own creatures to block the oppo-
nent’s attack. The player then has a second main phase in
which to play a land (if they did not play a land in main
phase 1) and play any spells in which they have sufficient
mana. The final phase officially concludes a player’s turn
and passes the turn to the opponent.

The Goal of this Work. As this is a work in progress we
do not describe all decision-making required in a game of
Magic. The focus of this paper is a framework for mak-
ing two fundamental and difficult decisions: (1) whether
a player should mulligan and (2) which card to play next.
Section 4 describes our representation scheme and our algo-
rithms for making these decisions.

3 The Bot in Magic:Arena
While Magic:Arena boasts a “Bot Match” mode in which
a user can play against an autonomous opponent named
Sparky, it is not meaningfully competitive: Sparky some-
times makes choices that a typical player would not. For ex-
ample, it is often the case that a player needs to evaluate the
largest threat on the board and then attempt to either remove
it or play around it. In a game against Sparky, we noticed
that the bot pacified (prohibits a creature from attacking and
blocking) the largest numeric threat on the board ignoring
the real threat: the only creature with flying. A win using
the flying creature followed shortly after.

Even for human players Magic is a difficult game to mas-
ter and mistakes are made. However, when an intelligent
agent makes a clearly flawed play, players perceive the agent
as non-competitive. By most accounts, Sparky seems to
be a reasonable AI opponent, but there are times in which
its autonomous nature is revealed. Sparky is our motiva-
tion for developing our Strategies Framework as a means of
decision-making for our agent play.

Figure 2: An example synergistic 3-turn sequence.

Figure 3: Three strategies for the lifegain deck (Djinnmaster
2020a).

4 The Strategies Framework
One way to build a deck in Magic is to identify synergies
among cards. For example, in a life-gain deck (Djinnmaster
2020a), we attempt to gain life either through spells or crea-
tures. The ability to gain life then synergizes with creatures
that grow in power and toughness each time you gain life.
Power refers to the amount of damage a creature deals in
combat to an opposing creature or player when it attacks and
toughness refers to the amount of damage needed to destroy
the creature. As an example, Bloodthirsty Aerialist (Wizards
of the Coast 2020a) is a creature with power 2 and toughness
3 (a 2/3 creature) with the text: “Flying. Whenever you gain
life, put a +1/+1 counter on Bloodthirsty Aerialist”. With
life-gain, it does not take long for Bloodthirsty Aerialist to
become a deep threat by growing in power and toughness.

Any deck allows a player to construct sequences of de-
sired cards to play based on particular synergies in a deck.
For example, it is advantageous to play one or two creatures
that gain life followed by a Bloodthirsty Aerialist. As an
example, we observe in Figure 2 a Turn 1 swamp and Vam-
pire of the Dire Moon (Wizards of the Coast 2020a); Turn 2
plains and Ajani’s Pridemate (Wizards of the Coast 2020a);
Turn 3 swamp and a Bloodthirsty Aerialist. With this se-
quence of plays it is conceivable that at the beginning of
Turn 4 the Bloodthirsty Aerialist might be a 3/4 (3 power
and 4 toughness) and Ajani’s Pridemate might be up to a
4/4 based on Vampire of the Dire Moon’s lifelink.

Our strategy framework attempts to formalize these syn-
ergies and thus make decisions exploiting such synergies
among cards in a deck. We say a strategy node is a set of
constraints describing a subset of cards in a deck D. Fig-
ure 3(a) depicts a constraint as being any card that costs 1



mana (1 CMC) such as Vampire of the Dire Moon. Another
example constraint is if a creature must be capable of gaining
the player life such as Daxos, Blessed by the Sun (Wizards
of the Coast 2020a). We note that since Daxos, Blessed by
the Sun gains a player life when a creature enters the bat-
tlefield or when a creature is removed, it is its own strategy
(Figure 3(c)). Generally, we say a strategy is a bidirectional
sequence of m strategy nodes S = (n1, n2, . . . , nm).

As our goal is to consistently play toward our strategies,
we define the idea of completing steps in a strategy. If a
Magic card c in play satisfies the constraints of a strategy
node n in a strategy S (n ∈ S), then n is a completed node
by c. If all strategy nodes in a strategy S are completed,
we say S is a completed strategy. If a Magic card c in a
player’s hand satisfies the constraints of a strategy node n in
a strategy S (n ∈ S) and the mana resources are available to
pay for the spell, then n is a completable node by c.

We say that a deck D defines a corresponding set of strate-
gies SD. A subset of strategies for our life-gain deck (Djin-
nmaster 2020a) are shown in Figure 3.

4.1 The Decision to Mulligan
For a deck D and its corresponding set of strategies SD, our
goal is to decide if a collection of cards H ⊂ D (‘hand’ in
card game parlance) is satisfactory to begin the game. Intu-
itively, a satisfactory opening hand is one that will play to-
ward completing a strategy or set of strategies. Thus, we de-
fine two measures of a hand H working toward completing
strategies SD: completable width and completable depth.

Given a hand H , we compute the number of strategies in
which at least one of the strategy nodes can be completed by
cards in H; we refer to this value as w. Since the number
of strategies for a deck (|SD|) may differ, we compute the
completable width as a ratio: w/|SD|. For completable depth,
we count the number of nodes that can be completed by H
in all strategies SD; call this value d. We also define NSD to
be the overall number of nodes defined by all strategies of a
deck (SD). We compute completable depth for H as d/NSD

.
As an example, assume the strategies in Figure 3 for the

life-gain deck and a hand containing 3 swamps, 1 plains,
Vampire of the Dire Moon, Ajani’s Pridemate, and Blood-
thirsty Aerialist. We compute the completable width as 2/3
since these cards can satisfy constraints and can complete
nodes in strategy (a) and (b), but not (c). There are 8 total
nodes in the three strategies in Figure 3 and we identify that
the cards in hand can complete 3 nodes in (a), 2 nodes in (b),
and 0 in (c). The completable depth is thus 5/8.

It is important to recall that with each turn, a player draws
a fresh card from their deck. Thus, the mulligan decision
must be made with imperfect information. We wish for an
opening hand to result in a competitive game. Hence, the
intent of these measures is to assess the versatility of the
current hand with respect to the overall strategies: we wish
for a hand to target a particular strategy (completable depth),
but also be open to pursuing other strategies (completable
width) based on the uncertainty of card draw.

The decision to mulligan is thus based on comparing both
the completable width and completable depth to a mulligan

threshold, T ∈ [0, 1]. We found T = 0.25 to be an experi-
mentally reasonable value. Considering the example in the
previous paragraph, we find the hand to be satisfactory and
decline to mulligan since both 2/3 > T and 5/8 > T . As
an extreme example, we would mulligan a hand containing
7 lands since no nodes would be completable (completable
width and completable depth are 0); similarly for a hand
containing no lands since we would not be able to play any
cards in hand.

4.2 The Decision of Which Card to Play

Our strategy-based approach proposes a simple algorithm
for making the decision of which Magic card to cast. The
input to our algorithm consists of the current game board
state B (i.e., all current cards in play including lands, crea-
tures, etc.), the player’s hand H , and the set of strategies
for the deck. The algorithm computes (a) what land to play
from H , if applicable, and (b) which card to play from H .
In general, we score each strategy and use those scores to
‘vote’ for an individual card in H to play; we discuss details
below.

Our algorithm proceeds as follows. We first identify our
land resources from B and the possible land resources in H .
Next, for all cards in H , we identify the subset of cards that
can be played this turn with available resources, P ⊆ H .

Let Sm be a strategy with m nodes. Our goal is to
compute score (Sm), a score for each strategy. Foremost,
score (Sm) begins with the number of constituent nodes:
5 ·m. Our rationale behind weighting toward longer strate-
gies is that there are usually larger payoffs at the end of more
intricate strategies. We next consider completed and com-
pletable nodes in Sm. We then determine how many nodes
in Sm are completed considering B as well as the number of
nodes that are completable considering P . We take the sum
of these completed and completable nodes, nc, and compute
a ratio: 100nc/m. Hence, score (Sm) = 5m+ 100nc/m.

We choose an individual card using each strategy’s weight
as a ‘vote’. We initialize the score for each playable card:
∀c ∈ P , score (c) := 0. For each strategy, Sm ∈ SD, we
choose the node with greatest index that can be completed by
one or more playable cards (call this playable set V ⊆ P ).
We then add the score of Sm to the score of each card: for all
c ∈ V , score (c)+= score (Sm). Our choice of card to play
is then cplay := argmaxc∈P score (c); cplay also dictates a
land card cland ∈ H that must be played to cast cplay.

As an example, consider the sequence of plays in Fig-
ure 2 completing the 3 top-most nodes of the strategy in
Figure 3(a). We compute the score of this strategy as
5·5+ 100·3

5 = 85. Now assume our hand contains one swamp
and two Twinblade Paladins (Wizards of the Coast 2020a),
a creature with mana cost 3W and grows by its controller
gaining life. In this case, strategy (a) in Figure 3 would
associate a score of 85 toward each Paladin in hand while
strategy (c) would contribute 0 since the card in hand is not
Daxos, Blessed by the Sun. Strategy (b) would contribute
5 · 2 + 100 · 2/2 = 110 toward each Paladin.



Table 1: Descriptors of interior table data in Table 2 and
Table 3.

Table 2: Results of first-to-100 matches for agents in the left
column using Life-Gain (LG) and Mono-Red (MR) decks;
inner tables described by the template in Table 1.

5 Experimental Analyses
We implemented our framework leveraging the open source
Forge codebase (Collectible Card Game Headquarters
2020). Forge is a tool supported by Magic enthusiasts that
allows a player to build decks across Magic’s history con-
sisting of more than 25000 cards. Forge is unique in that
it is a tool that implements some bot functionality and thus
provides a reasonable proof-of-concept testing ground for
our strategy-based approach compared to a tool like cocka-
trice (Cockatrice Consortium 2020) which is simply a cross-
platform virtual tabletop for online play among human com-
petitors.

Using Mono-Red (MR) (Djinnmaster 2020b) and Life-
Gain (LG) (Djinnmaster 2020a) decks, we set our strategy-
based decision processes against Forge’s AI. Our implemen-
tation can supersede Forge’s implementation about when to
mulligan and which cards to play; all other decisions (e.g.
attacking, blocking, etc.) used Forge’s procedures.

Each match is a “first to 100” set of BO1 games in which
play stops when one competitor reaches 100 wins; hence,
the number of BO1 games in a first-to-100 match may not
be consistent among matches. In this format, the loser of the
previous game goes first (“on the play”) in the next game
and the winner of the previous game will go second (“on
the draw”) in the next game. It is well-known in Magic that
a player being “on the draw” gives a higher probability of
loss compared to “on the play”. We observe in Table 2 that
this intuitive rule holds. Magic is a game of variance due,
in part, to the land system and size of a standard deck (60
cards). However, over many iterations we expect an agent
to win approximately 50% of games against itself (a self-
mirror match). We report reasonable win-rates (42.53%,
47.37%, 49.75%, and 49.75%) for the two agents playing
self-mirror matches with our two decks.

We now consider all other match results reported in Ta-
ble 2. Foremost, we observe the relative power of the LG
deck compared to the MR deck: win-rates for MR against
LG are low at 10.71%, 18.03%, 20.63%, and 28.06%. We
attribute these win-rates to MR hitting hard and fast while

Table 3: Results of first-to-100 matches with mulligans dis-
allowed for agents in the left column using Life-Gain (LG)
and Mono-Red (MR) decks; inner tables described by the
template in Table 1 minus the middle column.

LG gains life attempting to withstand the MR assault. The
life-gain sustains the deck into the mid-game while growing
larger creatures to eventually take over the game.

We evaluate the effectiveness of the strategy-based agent
compared to Forge’s agent by considering matches with a
common opponent. We use a 1-tailed, 2-sample proportion
test with H0 : p1 − p2 = 0, where p1 is the proportion of
wins by the strategy deck (S) and p2 corresponds to wins
with the Forge (F) deck. In LG matches against the FMR
deck, we had a p-value of 0.028 indicating that our SLG
deck performed better than the FLG deck; when comparing
against the SMR deck, the p-value was 0.0185 again indicat-
ing the SLG deck performed better. We note no significant
difference between SLG and FLG in direct play, as the SLG
deck won 49.49% of the games. We note that there was
no statistical significance between the SMR and FMR decks
when compared against either the FLG or SLG decks, how-
ever in direct play the SMR deck won 55.87%. As a work
in progress, these win-rates indicate our strategy-based ap-
proach is competitive with Forge when using the same deck,
but is not exemplary. Hence, we have room to evolve and
improve.

To consider the effectiveness of our mulligan procedures,
we executed best-to-100 matches between our strategy-
based agent and Forge (Table 3) except that our agent was
not allowed to mulligan. We compare corresponding cells in
Table 2 and Table 3. In some cases we observe a moderate
increased win-rate with mulligans disallowed for MR and
slight decrease for LG; these differences were not signifi-
cant. We attribute this variation to MR being a single-color
deck that can function well on few lands and thus a mulligan
to start the game with one fewer card may be detrimental. In
comparison, LG is a two-color deck and thus prone to land
issues in the early game if a better hand is not allowed. Re-
gardless, LG is a robust deck compared to MR.

6 Related Works
For an established game like Magic: The Gathering, the lit-
erature is surprisingly sparse when it comes to coordinated,
automated gameplay as we have implemented and tested.
Surprisingly, much of the literature arises as student projects
and not peer-reviewed publications. We begin with peer-
reviewed works from Peter I. Cowling and his co-authors.

In (Ward and Cowling 2009; Cowling, Ward, and Powley
2012), Cowling, et al. apply a Monte Carlo Tree search to
Magic. Magic is a game with imperfect information (e.g.,
opponent hand, next card a player will draw, etc.) and thus



one of the main criticisms is the use of determinization to
expand the tree during the Monte Carlo Tree search. How-
ever, it is common practice for players of Magic to “reason
over clairvoyance” (Russell and Norvig 2009). In partic-
ular, players reason over past play experiences with their
deck, speculate on cards in an opponent’s hand, speculate
on cards in an opponent’s deck list, or on drawing a partic-
ular card. Hence, determinization is common practice by
human players of Magic. No doubt the work of Cowling, et
al. has moved automated decision making in Magic forward.
However, their contributions focus on searching a space, an
expensive operation considering the number of decisions a
typical player makes in a game. It is unclear if the authors’
algorithms are efficient enough for a competitive best 2-of-
3 match which is allotted no more than an hour in practice.
In contrast, our contribution provides a heuristic for strate-
gic play with a simpler, more efficient data structure and a
method of reasoning over that structure. While our contri-
bution lacks algorithms for all decision-making procedures
required for a typical game of Magic, it describes an under-
lying framework to implement those decisions: attacking,
blocking, and “playing around the opponent.”

It is also the case that (Ward and Cowling 2009; Cowl-
ing, Ward, and Powley 2012) focus entirely on gameplay
decisions during play. While the algorithms they provide
extend to most of the decisions in a typical Magic game,
these works do not mention or analyze one of the most im-
portant decisions: the mulligan. Instead, their experiments
defined and used a set of acceptable fixed permutations of
cards in their decks. While their experiments are statisti-
cally relevant, we believe that our contribution helps fill this
important decision-making gap.

Chodoriwsky (Chodoriwsky 2006) describes representing
a deck using a synergy graph: an undirected graph in which
each card is a vertex and each edge represents a synergistic
relationship between the cards. As a result, the author is
able to compute a synergy metric for a given deck as well as
other measures related to synergistic locality. While this is
an interesting approach to evaluating the strength of a deck,
the work provides a static analysis of constituent cards in a
deck. In total, it provides a data structure that may serve as
the foundation for automated deck construction as well as
strategy generation; however, it does not address the issues
of turn-by-turn decision-making as we have done.

Deckbuilding is another area of interest in which there
is existing research. In (Bjørke and Fludal 2017), the au-
thors describe with few details their genetic approach to con-
structing the best possible sealed pool deck: ‘sealed’ is a
draft format in which a player receives six 15-card booster
packs and attempts to make the best deck possible for play
against other sealed decks. The evaluation function for this
work ended up being actual gameplay of each deck in the
Forge (Collectible Card Game Headquarters 2020) frame-
work (the same framework we used for our experiments in
Section 5). In their genetic approach, successful decks prop-
agate to future generations. While the work in (Bjørke and
Fludal 2017) is admirable, our goal is to establish a frame-
work for gameplay, not deckbuilding.

Existing literature including (Fink, Pastel, and Sapra

2015; Pawlicki, Polin, and Zhang 2014) attempt to use ma-
chine learning techniques to predict the monetary value of a
card based on its features: card type, keywords, mana cost,
rarity, etc. A work by Zilio, et al. (Zilio, Prates, and Lamb
2018) attempts to evaluate if a card properly predicts where
it falls on the Magic “color pie” (Rosewater 2017). These
ideas are in stark contrast with our evaluation of cards. As
described in the Section 3, one of the most impact aspects of
Magic: The Gathering is evaluating the perceived threat of a
card. While our approach performs card evaluation based on
similar features, our goal in evaluating the cards is for pur-
poses of gameplay, not investment purposes or correctness
of card design.

7 Conclusions and Future Considerations
Magic: The Gathering requires constant analysis and
decision-making. This work demonstrates that a strategy-
based framework can be used to make many important de-
cisions: when to mulligan and which cards to play. As a
work in progress we have focused on essential decisions re-
quired from a player in a typical game; for example, we im-
plemented attacking and blocking algorithms, but did not
include them in our tests. While our strategy system is ef-
fective for these decisions, we have yet to consider how the
strategy can be used, for example, to identify an opposition’s
deck archetype. Intuiting the composition of an opponent’s
deck is important to “play around” anticipated spells. For
example, if an opponent plays few creatures but uses colors
that have spells allowing the opponent to destroy all crea-
tures, we may wait to play any creature spells until such
a spell is cast. Our approach also casts spells at “sorcery
speed”; we do not consider casting spells at “instant-speed”.
Future iterations will synergize our strategy-based frame-
work with these other decision procedures.
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