
Deadlock-Free Online Plan Repair in Multi-robot Coordination with Disturbances

Adem Coskun, Jason O’Kane, and Marco Valtorta
Department of Computer Science and Engineering, University of South Carolina

acoskun@email.sc.edu, {jokane, mgv}@cse.sc.edu

Abstract

Multirobot systems are increasingly deployed in environ-
ments where they interact with humans. From the perspec-
tive of a robot, such interaction could be considered a distur-
bance that causes a well-planned trajectory to fail. Previous
approaches that modify trajectories in the presence of distur-
bances rearrange the order in which robots pass collision re-
gions and other obstacles, in the laudable attempt to improve
the average travel time for all robots. By doing so, however,
deadlock may arise. In this paper, we provide a precise defi-
nition of deadlock using a graphical representation and prove
some of its important properties. We show how to exploit
the representation to detect the possibility of deadlock and
to characterize conditions under which deadlock may not oc-
cur. We provide experiments in simulated environments that
illustrate the potential usefulness of our theory of deadlock.

Introduction
In the near future, collaboration between autonomous robots
and humans will increase. Even now, we share many work
spaces with robots; for example, there are some multi-robot
systems operating in warehouses and they may encounter
humans. If the trajectories of the robots are generated jointly,
then each robot must follow its own trajectory in a pre-
cise way so that all robots can reach their destination. It is
more challenging to operate robots safely and efficiently in
an environment where robots are required to avoid colliding
with humans. In recent work, Coskun and O’Kane (Coskun
and O’Kane 2019) utilized the control strategy developed by
Čáp, and Gregoire, and Frazzoli (Čáp, Gregoire, and Fraz-
zoli 2016) and modified it by flipping the order of passing
the common collision area between robots when some dis-
turbances in the environment make the robots stop, in order
to reduce robot travel times. Our paper extends that line of
work by providing a theoretical analysis of how to detect
deadlock and avoid it under the condition of flipping.

In this paper, we will provide a precise definition of dead-
lock and a graph representation of the trajectories in the co-
ordination space approach, a theoretical analysis of the fea-
sibility and complexity of detecting deadlocks in the system
when the label of the coordination space obstacle is subject
to change, and a simulation demonstrating how to detect and
avoid deadlocks in several environments.
Copyright © 2021by the authors. All rights reserved.

Figure 1: An environment with 20 robots. The dotted lines
represent the planned trajectories of the robots. The robots
in the red area are subject to a disturbance, which may be
caused by interaction with humans or other objects and re-
sults in a delay in their progress.

In the remainder of the paper, we first review related work
and give the formulation of the problem. Then, we propose
our deadlock approach with a theoretical analysis, and de-
scribe our new algorithm to detect and avoid deadlocks. Fi-
nally, we present our simulation results, and conclude with
some direction for future work.

Related Work
The problem of coordinating multiple robots in a shared
environment can generally be categorized into two groups,
namely reactive and planning approaches. In the reactive ap-
proaches, each robot follows its own shortest path, and col-
lisions are resolved locally by observing the other robots’
positions and velocities. The optimal reciprocal collision
avoidance (ORCA) (Van Den Berg et al. 2011) formulation
is used in practice due to its efficiency in calculating the ve-
locity of the obstacles. However, reactive approaches do not
guarantee that all robots reach their goal positions, so they
are subject to having deadlock. In the planning approaches,
all robots trajectories are generated by planning them be-
fore the robots start to execute their paths. These approaches
guarantee that all robots reach their goal positions. However,
their complexity increases exponentially with the number
of coordinated robots. A configuration space (Lozano-Perez
1990) for a robot represents all points that the robot can
reach, so planning for a robot reduces to finding a path be-
tween its start and goal positions in the configuration space.
A configuration space for a multi robot system is the Carte-

sian product of the configuration spaces for each robot. In
order to reduce the complexity of the planning approach, the
path-velocity decomposition described in (Kant and Zucker
1986) is used. The decomposition consists of planning the
path to avoid collisions with static obstacles, and planning
the velocity to avoid collisions with dynamic obstacles. Such
decomposition leads to the notion of coordination space
originally proposed in (O’Donnell and Lozano-Pérez 1989),
and extended to the geometry-based approach described in
(Leroy, Laumond, and Siméon 1999). One of the most prac-
tical class of planning algorithms is that of prioritized al-
gorithms, (Erdmann and Lozano-Perez 1987), because the
trajectories of each robot are planned one after another in-
stead of for all robots at once. A revised version of prior-
itized planning (Čáp et al. 2015) is used in our simulation
to generate initial trajectories. In order to make sure that
the system does not end up in deadlock, the robots must
execute their trajectories in the same temporal sequence as
planned. When robots cannot follow the planned trajectories
because of delays due to disturbances, one can use the algo-
rithm in (Čáp, Gregoire, and Frazzoli 2016) to allow limited
changes to plans without introducing deadlock. The exten-
sion by (Coskun and O’Kane 2019) gives additional freedom
to the robots to repair online their planned trajectories.

Problem Statement
In a planar environment W ⊆ R2, each of n disc-shaped
(with radius r) holonomic robots, indexed 1, . . . , n, moves,
from a known start position to a known goal position inW .
Time is modeled as a series of discrete steps.

The robots’ motions are initially planned by some multi-
robot trajectory planner, which generates a family of fea-
sible and jointly collision-free trajectories from the robots’
start positions to their goal positions. Specifically, the plan-
ner generates a trajectory for each robot, of the form πi :
{1, . . . ,Ki} → W , in which Ki denotes the time step when
robot i would reach its goal position when executing this
nominal trajectory. Thus πi(k) denotes the position inW oc-
cupied by the center of robot i, when that robot has reached
step k of its trajectory.

We are interested in scenarios wherein the robots cannot,
for reasons unknown at planning time, always make progress
along their trajectories. We refer to such a situation as a
disturbance, meaning that the robot is unexpectedly barred
from moving forward along its trajectory. This is modeled by
a disturbance function, δi : N → {0, 1}, under which robot
i experiences a disturbance at time t if and only if δi(t) = 0.
The disturbances are generated by some random process un-
known to the robots, which may vary acrossW .

At each time step, each robot can elect to attempt to
move forward along its trajectory or to remain intention-
ally motionless (presumably waiting to avoid a collision).
We model this for each robot by an action function (or pol-
icy), ai : N → {0, 1}. Here ai(t) = 1 indicates that robot i
does attempt to move along its trajectory at time t.

The actual progress of robot i along its trajectory at time
t is represented as xi(t) ∈ {1, . . . ,Ki}. Thus, at time t, the
position within W of robot i is π(xi(t)). Moreover, com-

bining the semantics of the disturbance and action functions
above, we obtain xi(t+ 1) = xi(t) + ai(t)δi(t).

The goal is for each robot i to choose, at each time t,
whether to move or wait (that is, ai(t) = 0 or ai(t) = 1),
in such a way that each robot reaches its goal, without any
collisions between robots, in minimal total time.

Summary of baseline approaches
This section reviews the approaches to this problem in
both (Čáp, Gregoire, and Frazzoli 2016) and (Coskun and
O’Kane 2019), on which this paper builds. Additional detail
may be found in those original papers.

To help ensure that the robots, in spite of the distur-
bances, nonetheless do not collide, we utilize their coordi-
nation spaces. The coordination space for robots i and j
is Cij = {(ki, kj) | ||πi(ki) − πj(kj)|| ≥ 2r}. The ob-
stacle region for robots i and robot j is defined as Oij =
{1, . . .Ki} × {1, . . . ,Kj} − Cij . The obstacle region Oij

can be partitioned into maximal connected regions, and rep-
resented as Oij = oij1 ∪ · · · ∪ o

(ij)
m . Each o(ij)k is called a

coordination space obstacle for robot i and robot j.
The movements of robot i and j can be represented as a

path in the coordination space from (1, 1) to (Ki,Kj) For
each coordination space obstacle, the path must pass either
over or under the obstacle. This is denoted as `(oijk) ∈{i, j}.
If `(oijk) = j, the path in the coordination space passes over
the obstacle, which implies that in the workspace robot j
passes that collision region first. Likewise, if `(oijk) = i, the
coordination space path travels under the obstacle and robot
i goes through first.

Based on these obstacle labels (Čáp, Gregoire, and Fraz-
zoli 2016), RMTRACK uses a policy equivalent to following
action function:

ai(t)=


0 if ∃j 6= i, s.t. ∃k : `(oijk) = j and

oijk ∩ ({xi(t) + 1}×{xj(t), ...,Kj} 6= ∅
0 if xi(t) = Ki

1 otherwise
(1)

The three cases of Equation 1 correspond to three distinct
states for each robot:
• Waiting (first case in Eq. 1): If there exists a coordination

space obstacle, oijk for robot i and j with label j, so that
`(oijk) = j, then we check whether there is an intersection
between the obstacle and the line from (xi(t) + 1, xj(t))
to (xi(t) + 1,Kj). The intersection indicates that robot j
did not pass the obstacle yet, and robot i should therefore
wait; thus the action variable is 0.

• Finished (second case in Eq. 1): When robot i reaches
its destination, it should not move any further. The action
variable then becomes 0.

• Moving State (third case in Eq. 1): If neither of the first
two cases applies, then robot i is free to move, taking the
action variable as 1.
As shown in (Čáp, Gregoire, and Frazzoli 2016), a sys-

tem implementing Equation 1 can effectively overcome dis-

turbances as the robots execute their nominal trajectories.
However, that approach maintains (in our terminology) the
same label for each obstacle as the nominal trajectories.
In cases where disturbances are distributed non-uniformly
across the environment, this can cause unnecessary delays.
In response, (Coskun and O’Kane 2019) introduced two
techniques called RMTRACK+TFF and RMTRACK+TFA
(named for ‘test flip fast’ and ‘test flip aggressive’) that se-
lectively modify some obstacle labels on-the-fly. For exam-
ple, suppose robots i and j share a coordination space ob-
stacle oijk , with `(oijk) = i. If robot i experiences a lengthy
delay before moving past this obstacle, then robot j must
wait when it reaches the obstacle oijk , until robot i passes it.
In such a case, RMTRACK+TFF and RMTRACK+TFA es-
timate the expected travel times for robot i and robot j with
two different approaches, and predict whether changing the
label of oijk —allowing j to proceed immediately— would
reduce total travel times for the robots i and j. If so then
the label is changed. The two variants TTF and TFA differ
in their tradeoffs between the computation time invested in
deciding whether to ‘flip’ an obstacle and the acuity in de-
tecting situations where such a flip would be beneficial.

Conditions for deadlock-free executions
Though RMTRACK+TFF and RMTRACK+TFA can effec-
tively modify the coordination plan (by judiciously chang-
ing obstacle labels) to improve overall efficiency, there are
circumstances in which those changes can lead to deadlock
conditions, wherein none of the robots can make progress. In
this section, we provide a precise definition of deadlock in
this context, and prove that, under certain reasonable but not
universal conditions, deadlock does not occur. These results
then form the foundation for the deadlock-free coordination
scheme we introduce in the next section.

We begin with a definition of deadlock. The three differ-
ent states —waiting, moving, and finished— for each robot
defined in Eq. 1 form the basis of the definition.

Definition 1 (deadlock). The system has a deadlock if at
least one robot is in the waiting state and no robots are in the
moving state.

Our concern is to understand the conditions under which
deadlocks can occur, to ensure that those conditions do not
arise. To that end, we first introduce collision segments in
coordination spaces.

Definition 2 (collision segment). For a given coordination
space obstacle oijk , the collision segment cijk for that ob-
stacle is the set of indices in {1, . . . ,Ki} along the path
for robot i between the path step at which robot i reaches
that obstacle, denoted s(cijk), and the path step at which
robot i clears that obstacle, denoted f(cijk). That is, cijk =

{s(cijk), . . . , f(c
ij
k)− 1}.

Figure 2 shows some example collision segments. Such
segments are important because they capture the structure of
how the movements of the various robots affect each other.
Notice in particular that the s and f functions induce a parti-
tion of the path of robot i into segments delimited by the start

{

{

{

2

1

3 {

{

{

x2

x3

x2

x1

o131

c211

c311

x1

o231

c121

c321

o121

c231

K1

K2

K2K1

K3

c131

K3

x3

Figure 2: Three robots that have pairwise collisions in the
environment are depicted on the top left. The coordination
spaces, C12, C13, and C23, are depicted on the top right, on
the bottom left, and on the bottom right, respectively. The
collision segments corresponds to the obstacles shown in the
coordination spaces.

and end points of all of its collision segments with all other
robots. Using this partition, we can express the relationship
between paths of the robots and labels of the obstacles.

Definition 3 (segment graph). The segment graph is a di-
rected graph containing vertices corresponding to the maxi-
mal path segments for each robot delimited by the start and
the finish of its collision segments with all other robots, de-
noted v(i)1 , v

(i)
2 , . . . , v

(i)
mi for each robot i; edges called path

sequence edges between each successive pair of vertices v(i)k

and v(i)k+1; and for each coordination space obstacle oijk with
label i, an edge called an obstacle-label edge from the vertex
for robot i corresponding to the final path segment overlap-
ping oijk to the vertex for robot j corresponding to the first
path segment overlapping ojik .

Figure 3 shows the segment graph for the scenario de-
picted in Figure 2. The intuition is that each edge in a seg-
ment graph describes a constraint wherein one segment of
some robot’s path must be completed before another seg-
ment can begin. Path sequence edges encode the constraint
that each robot must execute its path sequentially; obstacle
label edges encode the waiting behaviour required by the
first case in Equation 1.

It will be convenient later to refer to the starting and end-
ing points of the path segment for each vertex. We (re-)use
the letters s and f for this purpose, so that vertex v

(i)
k

in the segment graph corresponds to the range of steps
s(v

(i)
k), . . . , f(v

(i)
k) within the path for robot i. Notice that,

in general, the finish of one vertex is immediately before the
start of another: f(v(i)k) = s(v

(i)
k+1).

In addition, we write V (oijk) = {v(i)p , v
(i)
p+1, . . . v

(i)
p+q} ⊂

V for the set of robot i vertices containing obstacle oijk .
As the robots execute their paths, they move in sequence

v
(1)
1 v

(1)
2 v

(1)
3 v

(1)
4 v

(1)
5

v
(2)
1 v

(2)
2 v

(2)
3 v

(2)
4 v

(2)
5

v
(3)
1 v

(3)
2 v

(3)
3 v

(3)
4 v

(3)
5

v
(1)
1 v

(1)
2 v

(1)
3 v

(1)
4 v

(1)
5

v
(2)
1 v

(2)
2 v

(2)
3 v

(2)
4 v

(2)
5

v
(3)
1 v

(3)
2 v

(3)
3 v

(3)
4 v

(3)
5

Figure 3: [left] The segment graph for the three robots de-
picted in Figure 2. There are five vertices for each robot
because each robot has two collisions with other robots.
The horizontal edges represent the path sequence edges for
each robot, and the other three edges represent obstacle label
edges for each obstacle. Since the coordination space obsta-
cle o231 has label `(o231) = 2, V (o231) = {v(2)2 , v

(2)
3 }, and

V (o321) = {v(3)3 , v
(3)
4 }, there is an edge from v

(2)
3 to v(3)3 .

[right] The segment graph when the label of the obstacle,
o121 changes from 2 to 1, indicating that robot 1 passes the
obstacle before robot 2.

s1
g1

g2

s2
v
(1)
1 v

(1)
2

v
(2)
1 v

(2)
2 v

(2)
3

Figure 4: If robot 1 reaches its goal position, g1, before robot
2 clears the intersection, then the system has a deadlock.
Even though the environment (left) has a deadlock, the cor-
responding segment graph (right) does not have a cycle.

through the segments of their paths. Thus, we can refer to
the present vertex in the segment graph for each robot. Any
vertex corresponding to a path segment that the robot has not
yet begun to execute is a called a future vertex for that robot.
The subgraph of the segment graph induced by the present
and future vertices is called the active subgraph.

The next definition is needed to connect segment graphs
to the possibility of deadlocks in the future.

Definition 4. A set of trajectories is non-conflicting if, for
every pair of i, j of distinct robots, for all 1 ≤ k ≤ Ki, we
have ||πi(k)− πj(1)|| ≥ 2r, and ||πi(k)− πj(Kj)|| ≥ 2r.

That is, when we have non-conflicting trajectories, the
path for each robot is disjoint from the start and goal posi-
tions of all other robots. Figure 4 shows an example of con-
flicting trajectories and the corresponding segment graph.

Now we can show that cycles in the segment graph corre-
spond to potential deadlocks.

Theorem 1. If the system has non-conflicting trajectories
and is in a deadlock, then the active subgraph has a cycle.

Proof. Definition 1 ensures that at least one robot is in the
waiting state. Let i denote the index of this robot, and let
v
(i)
p denote its present vertex. Because of Definition 3, there

must therefore be at least one edge incoming to v(i)p+1, i.e. the
vertex corresponding to the next segment for robot i from a

future vertex of some other robot. Let j denote the index of
this other robot. Robot j cannot be in the moving state be-
cause the system is in a deadlock. Moreover, robot j cannot
be in the finished state because being in the finished state,
in a system with non-conflicting trajectories, does not pre-
vent any other robots —robot i in particular— from mov-
ing. Thus, robot j is in the waiting state. Because robot j is
waiting, there must be another incoming obstacle-label edge
from another robot’s future vertex to a future vertex of the
robot j, and so on. This produces an infinite sequence of
vertices in the graph, each connected by a directed edge to
its predecessor in the sequence. Since the number of robots
is finite, the vertices in this sequence cannot all be distinct.
Therefore, the sequence must eventually repeat, forming a
cycle in the active subgraph.

Theorem 2. If the active subgraph of a system has a cycle,
then the system has a deadlock.

Proof. It is obvious that if the system has one robot, then
the segment graph has only path sequence edges, so a cycle
cannot exist. Also, a cycle cannot exist when there are only
two robots. Note that there must be only one incoming or one
outgoing obstacle-label edge between two robots’ vertices
for each coordination space obstacle, so those obstacle-label
edges do not lead to a cycle.

Now, assume that there are at least three robots in the
system and that the active subgraph has a cycle between
robot i, robot j, . . . , and robot k, whose present vertices
are v(i)p , v

(j)
q , . . . , v

(k)
r , respectively.

Consider a cycle between future vertices of the robots in
the segment graph: v(i)p+1 → v

(j)
q+1 → . . .→ v

(k)
r+1 → v

(i)
p+1

Since there is an obstacle-label edge from robot k to robot
i, robot i cannot start the future vertex, v(i)p+1 before robot k

finishes its future vertex, v(k)r+1.
Similarly, there is also an obstacle-label edge from robot

i to robot j, so robot j cannot start the future vertex, v(j)q+1

before robot i finishes its future vertex, v(i)p+1.
Therefore, no robots in the cycle start their future vertex

and stay in the waiting state, so the system has a deadlock.

Corollary 1. If, in a system with non-conflicting trajecto-
ries, the active subgraph contains no cycles, then the system
is not in a deadlock.

This last result is of particular interest because, since the
initial trajectories are collision free, the only way a cycle can
be introduced in the segment graph is by modifying one of
the obstacle labels, which in turn rewires one of the obstacle
label edges. This idea underlies the deadlock free coordina-
tion approach in the next section.

Moving beyond that observation, we now also provide a
sufficient condition, which results a deadlock-free system,
even in cases were the obstacle labels can be freely modified.
We first examine the disjointedness of collision segments.

Theorem 3. If the collision segments are disjoint, then each
set V (oijk) contains only a single vertex.

2

1

3

(a)

2

1

3

(b)

3

1

2

(c)

3

1

2

(d)

Figure 5: An example deadlock configuration.

Proof. Suppose |V (oijk)| 6= 1. The existence of more than
one vertex in the set V (oijk) indicates there exists at least
one more collision segment reached or cleared by robot i
before robot i clears oijk . This contradicts the assumption that
collision segments do not intersect, so |V (oijk)| = 1.

The existence of these singleton vertex-segment sets is of
interest because it allows us to demonstrate that the corre-
sponding segment graph does not have a cycle.

Theorem 4. If the collision segments are disjoint, then the
segment graph does not contain a cycle.

Proof. Suppose the segment graph has a cycle such that
v
(i)
p → v

(j)
q → · · · → v

(k)
r → v

(i)
p with V (oijl) = {v(i)p },

V (ojil)={v
(j)
q }, . . . , V (okim)={v(k)r }, and V (oikm)={v(i)p }.

Since V (oijl) = {v(i)p }, s(v(i)p) must be the number of
path steps to reach obstacle oijl . However, since V (oikm) con-
tains only a single vertex, s(v(i)p) is also the number of path
steps to reach the obstacle oikm. This contradicts the assump-
tion that the collision segments are disjoint. Therefore the
segment graph does not have a cycle.

Finally, viewing Theorem 4 in light of Corollary 1, one
sees conditions which, though not directly leveraged in the
framework of this paper, may nonetheless be useful when
designing multi-robot trajectory planners. If the planner gen-
erates paths that meet that condition — in this context, the
requirement is that intersection points between paths must
be at least distance 2r apart from each other, then deadlocks
can be avoided, even if a method such as RMTRACK+TFF
or RMTRACK+TFA modifies obstacle labels.

Algorithm Description
The multi-robot trajectory planner in (Čáp et al. 2015) gen-
erates the initial trajectories for the robots. When this offline
trajectory planner generates the plan, the disturbances are
unknown and the probability of having disturbances is non-
uniform in the environment.

When a robot reaches the obstacle before another one
reaches it due to disturbances, and the label of the obsta-
cle belongs to the other robot, then the robot must stay
in the waiting state. There are two approaches to decide
whether changing the label is beneficial or not as described
in (Coskun and O’Kane 2019).

Briefly, the RMTRACK+TFF approach only calculates
expected travel time to clear the obstacle for the robot in the
waiting state, and expected travel time to reach the obsta-
cle for the robot, having disturbances. If the first calculated
value is less than the second one, the robot in the waiting
state can clear the obstacle before the other one reaches it,
so the label is changed; otherwise the robot in the waiting
state does not move until the other one clears the obstacle.
On the other hand, the RMTRACK+TFA approach calcu-
lates four different expected travel times taking into account
both robots’ movement. It first calculates the expected travel
times to clear the obstacle for both robots with the current
label. Then, it assumes the label is changed, and recalcu-
lates the expected travel times to clear the obstacle for both
robots. If the sum of the last two expected travel times is less
than the sum of the first two expected travel times, changing
the label is overall beneficial because the total travel time is
reduced, so the label is changed.

The main contribution of the proposed algorithm is that
it allows testing to determine whether changing an obstacle
label leads to a deadlock. The algorithm first generates the
segment graph by using a Java library, JGraphT1. Then, if
the segment graph detects a cycle with the updated label,
the algorithm does not change that label. For example, let
us recall the example depicted in Figure 2. There are three
robots, and there are three pairwise obstacles between each
robot. According to the label of the obstacles, robot 2 should
pass the obstacle before robot 1 passes, as shown in C12,
on the top right of Figure 2. However, robot 2 is subject to
more disturbance than the others, and robot 1 reaches the
obstacle before robot 2 as depicted on Figure 5b. There are
two scenarios for Robot 1, staying in the waiting state until
robot 2 clears the obstacle, or flipping the label of obstacle
and continuing to execute its path. If robot 1 changes the
label, then it can move, but it needs to stop to avoid collision
with robot 3, which is in the waiting state by waiting for
robot 2, depicted on Figure 5c. Then, when robot 2 reaches
the obstacle, a deadlock ensues as shown in Figure 5d. In
order to avoid this deadlock, when robot 1 needs to change
the label between robot 2, the segment graph is updated, and
checked for the occurrence of a cycle. If a cycle occurs as
shown on the right of Figure 3, then the algorithm does not
change the label, and robot 1 stays in the waiting state so
that the system does not have a deadlock.

Experimental Results
We have extended the original code for RMTRACK sim-
ulation2 by adding flipping algorithms and our new dead-
lock detection method, and implemented it in Java with an
Ubuntu 20.04 computer and a 2.9GHz processor.

1https://jgrapht.org/
2https://github.com/mcapino/rmtrack

https://jgrapht.org/
https://github.com/mcapino/rmtrack

5 10 15 20
0

500

1000

1500

2000

2500

number of robots

a
v
e
ra

g
e
 o

f
tr

a
v
e
l t

im
e
 (

s
e
c
) average of travel time (sec)

RMTRACK
RMTRACK+TFF
RMTRACK+TFA

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of robots

a
v
e
ra

g
e
 c

o
m

p
.
ti
m

e
 f
o
r

fl
ip

p
in

g
 (

s
e
c
)

average comp. time for flipping (sec)

RMTRACK+TFF
RMTRACK+TFA

(b)

5 10 15 20
0

10

20

30

40

50

number of robots

a
v
e
ra

g
e
 o

f
n
u
m

b
e
r

o
f
fl
ip

s
 e

xe
c
u
te

d average of number of flips executed

RMTRACK+TFF
RMTRACK+TFA

(c)

5 10 15 20
0

20

40

60

80

100

number of robots

s
u
c
c
e
s
s
 r

a
te

 [
%

]

success rate [%]

RMTRACK
RMTRACK+TFF
RMTRACK+TFA

(d)

Figure 6: Experimental Results

The environment for the experiments in this paper is
shown in Figure 1. The probability of having disturbance in
the red area is 0.85, and for the rest of the environment, it is
0.05. For each number of robots (5, 10, 15, and 20), we have
10 different randomly generated start and goal positions.

The average travel times of RMTRACK and two flipping
algorithms are shown in Figure 6a. The flipping algorithms
reduced the travel times and avoided deadlock, so that all
robots reached their goal positions as shown in Figure 6d.

The average computation time for RMTRACK+TFA
is longer than the average computation time for RM-
TRACK+TFF as shown in Figure 6b because RM-
TRACK+TFA calculates the expected travel times by con-
sidering the movements of both robots with or without flip-
ping the label of the obstacle. Also, note that computation
time in general is small when compared with travel time.

The number of flips is almost the same for two flipping
algorithms in Figure 6c because the collisions between two
robots may happen only in a small area of their trajecto-
ries. On the other hand, if two robots travels in a long and
narrow passage, then collisions may happen in a large area
of their trajectories, and we observed (not shown) that RM-
TRACK+TFA performs better than RMTRACK+TFF.

Simulation videos and detailed segment graph examples,
including an environment in which deadlock occurs when
running the new algorithms, are provided in a repository.3

Conclusion
We provided a theoretical analysis of the conditions un-
der which flipping algorithms lead to deadlock, and pro-
vided conditions for deadlock-free environment even in the
presence of flips. Our simulation results complement the

3https://www.dropbox.com/sh/
h7bj8pm0ic53puq/AACN6WeJO0H7_rXSmpyYLl9ja?
dl=0

theoretical ones by showing that flipping algorithms sig-
nificantly reduce robot travel times when the difference
in disturbance probability between different areas is large.
However, since flipping algorithms may lead to deadlock
in some situation, we have proposed an algorithm based
on the segment graph data structure to detect and avoid
deadlocks before flipping, thus combining the efficiency of
flipping algorithms with a theoretical guarantee of dead-
lock avoidance. A reviewer suggested that we investigate
the algorithms described in (Ma, Kumar, and Koenig 2017;
Berndt et al. 2020), which seem to be related to ours. We
plan to do that in the near future. In future work, we also
plan to use segment graphs to detect and avoid deadlocks in
decentralized approaches to multi-robot coordination.

References
[Berndt et al. 2020] Berndt, A.; Van Duijkeren, N.; Palmieri, L.;

and Keviczky, T. 2020. A feedback scheme to reorder a multi-
agent execution schedule by persistently optimizing a switchable
action dependency graph. arXiv preprint arXiv:2010.05254.

[Čáp et al. 2015] Čáp, M.; Novák, P.; Kleiner, A.; and Seleckỳ, M.
2015. Prioritized planning algorithms for trajectory coordination of
multiple mobile robots. IEEE Transactions on Automation Science
and Engineering 12(3):835–849.

[Čáp, Gregoire, and Frazzoli 2016] Čáp, M.; Gregoire, J.; and Fraz-
zoli, E. 2016. Provably safe and deadlock-free execution of multi-
robot plans under delaying disturbances. In 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
5113–5118. IEEE.

[Coskun and O’Kane 2019] Coskun, A., and O’Kane, J. M. 2019.
Online plan repair in multi-robot coordination with disturbances.
In International Conference on Robotics and Automation (ICRA),
3333–3339. IEEE.

[Erdmann and Lozano-Perez 1987] Erdmann, M., and Lozano-
Perez, T. 1987. On multiple moving objects. Algorithmica
2(1):477–521.

[Kant and Zucker 1986] Kant, K., and Zucker, S. W. 1986. Toward
efficient trajectory planning: The path-velocity decomposition. The
International Journal of Robotics Research 5(3):72–89.

[Leroy, Laumond, and Siméon 1999] Leroy, S.; Laumond, J.-P.;
and Siméon, T. 1999. Multiple path coordination for mobile robots:
A geometric algorithm. In IJCAI, volume 99, 1118–1123.

[Lozano-Perez 1990] Lozano-Perez, T. 1990. Spatial planning:
A configuration space approach. In Autonomous Robot Vehicles.
Springer. 259–271.

[Ma, Kumar, and Koenig 2017] Ma, H.; Kumar, T. S.; and Koenig,
S. 2017. Multi-agent path finding with delay probabilities. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31.

[O’Donnell and Lozano-Pérez 1989] O’Donnell, P. A., and
Lozano-Pérez, T. 1989. Deadlock-free and collision-free coor-
dination of two robot manipulators. In 1989 IEEE International
Conference on Robotics and Automation, 484–489. IEEE
Computer Society.

[Van Den Berg et al. 2011] Van Den Berg, J.; Guy, S. J.; Lin, M.;
and Manocha, D. 2011. Reciprocal n-body collision avoidance. In
Robotics Research. Springer. 3–19.

https://www.dropbox.com/sh/h7bj8pm0ic53puq/AACN6WeJO0H7_rXSmpyYLl9ja?dl=0
https://www.dropbox.com/sh/h7bj8pm0ic53puq/AACN6WeJO0H7_rXSmpyYLl9ja?dl=0
https://www.dropbox.com/sh/h7bj8pm0ic53puq/AACN6WeJO0H7_rXSmpyYLl9ja?dl=0
https://www.dropbox.com/sh/h7bj8pm0ic53puq/AACN6WeJO0H7_rXSmpyYLl9ja?dl=0

	Introduction
	Related Work
	Problem Statement
	Summary of baseline approaches
	Conditions for deadlock-free executions
	Algorithm Description
	Experimental Results
	Conclusion

