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Abstract

Transformer-based models have demonstrated excellent ca-
pabilities of capturing patterns and structures in natural
language generation and achieved state-of-the-art results in
many tasks. In this paper we present a transformer-based
model for multi-turn dialog response generation. Our so-
lution is based on a hybrid approach which augments a
transformer-based generative model with a novel retrieval
mechanism, which leverages the memorized information in
the training data via k-Nearest Neighbor search. Our sys-
tem is evaluated on two datasets made by customer/assistant
dialogs: the Taskmaster-1, released by Google and holding
high quality, goal-oriented conversational data and a propri-
etary dataset collected from a real customer service call cen-
ter. Both achieve better BLEU scores over strong baselines.

Introduction
Automatic dialog generation is become today a fundamental
component for many real-world, challenging applications,
such as virtual assistants, chatbots, etc., and is also a matter
of great concern for companies and organizations relying on
artificial intelligence solutions to enhance millions of daily
interactions through their services.

Simple single-turn Seq2Seq architectures, initially pro-
posed for this task, often fail to capture long-term tempo-
ral dependencies across dialog turns. (Sutskever, Vinyals,
and Le 2014; Vinyals and Le 2015; Li et al. 2016). Multi-
turn Seq2Seq models, such as the hierarchical recurrent en-
coder decoder (HRED) (Serban et al. 2016; Xing et al. 2018;
Serban et al. 2017) have tried to alleviate these problems,
yielding responses more coherent with the dialog contexts.
Nonetheless, the generated texts tend to be either generic
or too short, and not comparable with the human ones. Re-
cently, pretrained transformer-based models such as BERT
(Devlin et al. 2018), Transformer-XL (Dai et al. 2019), XL-
Net (Yang et al. 2019) and ERNIE (Zhang et al. 2019) led to
state-of-the-art performance on many natural language pro-
cessing/understanding (NLP/NLU) tasks, including ques-
tion answering, sentence classification, sentence similarity
inference, and named entity recognition etc.
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An interesting idea which further enhances the generative
model performance is to condition the generation on sam-
ples retrieved from a task-related datastore. In (Guu et al.
2020; Lee, Chang, and Toutanova 2019) a generative model
is augmented with a neural retriever trained to pick infor-
mative text paragraphs; (Khandelwal et al. 2020) propose to
enhance a language model (LM) through a nearest neigh-
bor search in suitable text collections. The model we present
in this paper exploits a similar framework for dialog gen-
eration. Our first original contribution is showing how to
generate dialog continuations using a LM augmented with a
k-nearest neighbors (kNN) based retrieval mechanism. Fur-
thermore, we exploit the typical dialog structure to enhance
and speed the retrieval mechanism, improving the genera-
tion results. In section ”Model Overview” we introduce our
model and formally define our approach, also going into de-
tail of the retrieval mechanism. The remaining sections are
devoted to the dataset descriptions and results discussion.

Model Overview
We propose a method which improves dialog generation by
exploiting memorized information from the training data,
without further model training. At inference, turn generation
is enhanced by interpolating the next word distribution based
on the trained LM with the one based on a kNN search sys-
tem. A single LM forward pass over the training data is pre-
liminary conducted to compute context-target pairs and store
them in a key-value pair datastore, which will be queried to
perform the kNN search. The next sections describe this pro-
cedure and how a kNN distribution is computed and used to
augment the LM.

Datastore Creation
The first step in order to create the datastore is the training
of a LM, in our case a Transformer-XL (Dai et al. 2019), by
minimizing the cross entropy of the training data. Overfitting
is controlled through early stopping on validation data per-
formance. Differently from (Dai et al. 2019) and (Khandel-
wal et al. 2020), which train a LM by concatenating all the
examples, we train the model by resetting the Transformer-
XL states at the beginning of each chat: this effectively pre-
vents the model from conditioning on previous unrelated



Figure 1: Illustration of the Generation Process

contexts.
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occurring between an assistant and a user; cit is represented
as a sequence of tokens, i.e. cit = (wi
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is the target word.

Let f(cit) denote the context-encoder function, that maps
the context cit to its fixed-length vector embedding. We de-
fine f(·) as the input to the last feedforward layer in the final
attention block of Transformer-XL, as in (Khandelwal et al.
2020). This achieves better performance than other options
(e.g, the output of the last transformer layer). More specif-
ically, f(cit) represents the embedding of token wi

t−1 after
attending to all the previous tokens in the example.

Through one forward pass on the training data, the trained
LM is used to build the datastore (K,W ) containing the em-
beddings of all the tokens in the training data:

(K,W ) :=(kit, w
i
t)=(f(cit), w

i
t), ∀(cit, wi

t)∈D

where kit = f(cit) is the vector representation of the context,
and wi

t is the target word id (i.e. integer number).

Hybrid Probability Distribution
At inference, at every time step t, the trained LM receives a
query (qt), i.e. a chat truncated at the end of a user turn, and
generates the next assistant turn token-by-token, according
to the following steps, also illustrated in Fig. 1:

• Generate the context embedding f(qt) and the probabil-
ity distribution PLM (vt|qt) over next words in the vocab-
ulary

• Issue a kNN search with f(qt) as query, to get from the
datastore its nearest neighbors Nt:

Nt = {(k1, w1), (k2, w2) . . . (kn, wn) . . .}

• Compute the score SkNN (wn|qt) of the token wn over
Nt, based on L2 distance between kn and f(qt):

SkNN (wn|qt) =
e−d(kn,f(qt))∑

kj∈Nt
e−d(kj ,f(qt))

• Aggregate the scores of each vocabulary token wn as the
sum of all its occurrences within the retrieved neighbors:

SAggr
kNN (wn|qt) =

∑
wn′∈Ntwn′=wn

SkNN (wn′ |qt)

• Get the probability distribution PkNN over next words in
the vocabulary:

PkNN (vt|qt)=
∑

(kn,wn)∈Nt

1vt=wn
(SAggr

kNN (wn|qt))

where 1vt=wn is a vector whose dimension is equal to the
vocabulary size and whose elements are all zero except
for the t-th one, equal to 1.

• Interpolate PkNN with PLM to get the final probability
distribution P for next word vt :

P (vt|qt)=λPkNN (vt|qt)+(1−λ)PLM (vt|qt)

• Sample the next word v̂t by greedily sampling from
P (vt|qt) and concatenate v̂t to qt to update the context:
qt+1 = qt + v̂t

If v̂t is a terminal token the generation process stops; other-
wise the entire procedure is repeated.

Retrieval Mechanism
To search the datastore, we use FAISS (Johnson, Douze, and
Jégou 2017), an open source library for fast nearest neighbor
retrieval in high dimensional space. FAISS’s central build-
ing block is the index, a structure which stores millions of
key-value pairs for efficient search. An issue with the index
is that the number of elements could easily grow to hun-
dreds of millions, leading to memory issues and hindering
the search performance. However in practice, we only need
to store token embeddings for assistant turns, since we are
only interested in generating assistant responses. So we pro-
pose the simple but effective idea of filtering out from the
datastore every token coming from a user turn, so almost
halving its size, and allows the generation of consistent ut-
terances, resembling assitant specific style.

Dataset Description
Two different datasets are used as benchmarks for our
method: a public dataset, the Taskmaster-1, released by
Google in 2019 and a real, company collected, call center
customer service dataset.
Taskmaster-1 dataset. Taskmaster-1 (Byrne et al. 2019) is
a crowsurced dataset, where Amazon turkers were asked to
write dyadic dialogs following some given set of instructions
describing six tasks: ordering pizza, creating auto repair ap-
pointments, setting up rides for hire, ordering movie tickets,
ordering coffee drinks and making restaurant reservations.



Table 1: Dataset specifications.

Taskmaster-1 Prop. dataset
# dialogs 7,708 1,328,301
# turns 169,467 21,953,321
# unique tokens 29,626 1,601,647
avg. turn per chat 21.99 16.53
avg. tokens per turn 7.83 18.00

Workers were asked to play the role of both assistant and
user. Specifically, they were told to write a scenario in which
they are speaking to their assistant on the phone while the as-
sistant accesses the services for one of the given tasks. The
resulting dataset contains 7,708 conversations. More info
about the dataset are in table 1.
Proprietary (Prop.) dataset.1 This dataset contains dyadic
agent-user chats collected from a financial service call cen-
ter over a one year time period, giving us the opportunity
to test our approach in a real company scenario. It contains
172 times the dialogs number of the Taskmaster-1, as shown
in table 1, and comes with two meta-information, the turn
numbers and the agent-ids. The turn number is just the po-
sition of the specific turn within the chat, while the agent-id
is a unique identifier for the agent speaking. We concatenate
these information to the chat’s text, following the approach
used in (Wolf et al. 2019). An example is given in figure 3.

Implementation Details and Results
In this section we present the model implementation details
and discuss the results obtained for both datasets.

Taskmaster-1 dataset
For the Taskmaster-1 we used a Transformer-XL model with
12 layers, 8 heads, 512-dimensional hidden states and 2048
as inner attention dimension, resulting in 49M weights and
trained for a maximum of 10k steps optimizing with Adam.
The training stopping criterion is based on perplexity on
the development set. Hyperparameter tuning, including op-
timal λ determination, is done through performance evalu-
ation over the development set. We adopted a BPE vocabu-
lary (Sennrich, Haddow, and Birch2015) consisting of 16K
tokens and generated using the Sentencepiece library (Kudo
and Richardson 2018). All the training set is used to build
the datastore.

Our model Transformer-XL + kNN is compared with
two baselines: -Transformer, the best performing model by
(Byrne et al. 2019) and - Transformer-XL, i.e. the LM used
without the retrieval mechanism. The first column of table 2
shows the corresponding BLEU scores2, obtained as mean
values of 10 different runs, and standard deviations. We can
see that our method gets more than two BLEU points over
the Transformer baseline, and more than one point over the
Transformer-XL baseline.

1The dataset can not be made public due to privacy constraints
2BLEU script at: https://github.com/tensorflow/tensor2tensor/blob

/master/tensor2tensor/bin/t2t-bleu

Table 2: Average BLEU and standard deviations on test set.
The statistical significance is validated via Student’s t-test
with significance level of 99.8%.

Taskmaster-1 Prop. dataset
Models: Avg Std Avg Std
Transf. 6.113 - - -
(Byrne et al. 2019)
Transf.-XL 7.09 0.14 39.96 0.36
Transf.-XL + kNN 8.30 0.05 41.72 0.20

Figure 2: Taskmaster-1 BLEU trend (development set).

Figure 2 depicts the BLEU trend curve when the interpo-
lation parameter λ varies through the selected range. We can
see that kNN interpolation improves the BLEU scores over
the Transformer-XL baseline for every value of λ in the se-
lected range. The best result is with λ = 0.4, indicating LM
and context retrieval are almost equally contributing.

Proprietary dataset
For the proprietary dataset we used the same model hyperpa-
rameters as for the Taskmaster-1 but augmented the hidden
states dimension to 768 and the inner attention dimension
to 3072, resulting in ˜116M weights. We trained for a maxi-
mum of 400k steps.

Since using all the training set for the datastore would
result in a prohibitively large disk space usage we decided
to build it using just the last 3 months of the training set
(1/4 of the entire data). This resulted in ˜176M embeddings
which occupy ˜500GB of disc memory. Also in this case the
Transformer-XL + kNN improves over the LM model for
about 1.8 BLEU points, even with a datastore smaller then
the entire training set. These results are obtained interpolat-
ing with λ = 0.5 (best on dev. set).

Figure 3 shows a sample from the test data along with
the expected target, the turn generated by the Transformer-
XL, and the turn generated by our Transformer + kNN. In
this dialog a user wants some help for a credit card applica-
tion. Our proposed model generates a sensible and relevant

3Results from original paper



Figure 3: Example of inference query, along with results
from baseline and our best model. agent@company.com is
the agent-id, which is preceded by the turn number. Tokens
between angular parenthesis indicate the beginning and end
of turns.

continuation: the agent conveys the intent to help the user
apply for the credit card, as in the target. On the other hand
the baseline Transformer-XL model generates a generic re-
sponse which is not useful in advancing the dialog.

Conclusions
In this work we shown how to enhance a generative model
for dialog completion by pairing it with an effective retrieval
system. Our approach achieves higher BLEU scores than
strong generative models when tested on two challenging
datasets. Moreover, our solution often outputs more sensi-
ble/informative dialog turns. In the future we plan to extend
this preliminary work analysing more models on different
datasets, and further investigating results and generated ex-
amples.
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