
Using deep learning for trajectory classification in imbalanced dataset

Nicksson Freitas, Ticiana Silva, José Macêdo, Leopoldo Junior
{nickssonarrais, ticianalc, jose.macedo,leopoldosmj}@insightlab.ufc.br

Insight Data Science Lab
Fortaleza, Brazil

Abstract

Deep learning has gained much popularity in the past years
due to GPU advancements, cloud computing improvements,
and its supremacy, considering the accuracy results when
trained on massive datasets. As with machine learning, deep
learning models may experience low performance when han-
dled with imbalanced datasets. In this paper, we focus on the
trajectory classification problem, and we examine deep learn-
ing techniques for coping with imbalanced class data. We ex-
tend a deep learning model, called DeepeST (Deep Learning
for Sub-Trajectory classification), to predict the class or la-
bel for sub-trajectories from imbalanced datasets. DeepeST
is the first deep learning model for trajectory classification
that provides approaches for coping with imbalanced dataset
problems from the authors’ knowledge. In this paper, we per-
form the experiments with three real datasets from LBSN
(Location-Based Social Network) trajectories to identify who
is the user of a sub-trajectory (similar to the Trajectory-User
Linking problem). We show that DeepeST outperforms other
deep learning approaches from state-of-the-art concerning the
accuracy, precision, recall, and F1-score.

Introduction
The recent advances in the development of tracking and
surveillance devices and the popularity of Location-Based
Social Networks (LBSNs) contribute to the explosive
growth of trajectory data. We strongly believe that these data
provide a unique opportunity for understanding the patterns
and behaviors of several moving objects, such as people, an-
imals, transportation modes, hurricanes, among others.

In the literature, there exist several research problems for
trajectory data (Zheng, 2015). One of them is the Trajectory
classification that is an efficient way to analyze trajectory.
In this paper, we focus on trajectory classification for imbal-
anced datasets.

The trajectory classification problem consists of build-
ing a prediction model to classify a new trajectory in a
single-class or multi-class. The model is trained and learns
the patterns (or classes) from a historical labeled trajectory
(or sub-trajectory) data. Trajectory classification can be ap-
plied among other applications to identify the transportation
mode from a moving object trajectory (like car and bus, for

Copyright © 2021by the authors. All rights reserved.

instance) or to link the trajectory to its user (TUL prob-
lem)(Gao et al., 2017).

In general, the trajectory classification problem is chal-
lenging because of: (1) the massive volume of trajectory data
is continuously generated by multiple users; (2) the com-
plexity associated with the data representation (how can we
represent latitude, longitude, and timestamp features in our
models without losing essential information?); (3) the se-
quence of spatio-temporal points can be sparse in time and
space, for instance, LBSNs usually contain samples in days;
(4) the nature of multiple dimensions: as technologies ad-
vances, trajectories have more and more properties, such as
acceleration, velocity, weather condition, POI category, and
adverse events; (5) the number of the classes can be much
larger than the number of motion patterns (more than fifty
or one hundred class). (6) Trajectory datasets may present
imbalanced distributions of the target variable, e.g., an Im-
balance Ratio (IR) greater than two (Fernández et al., 2008).

More recent Deep Learning models emerged to link tra-
jectories to their generating users. TULER proposed in (Gao
et al., 2017), and TULVAE proposed in (Zhou et al., 2018)
use a Recurrent Neural Network (RNN) for classification
and minimize the sparse problem using an embedding vec-
tor, but both models do not handle multidimensional data.
On the other hand, MARC proposed in (May Petry et al.,
2020) and DeepeST proposed in (blind) handle multidimen-
sional and use embedding to minimize the sparsity problem.
However, these models offer no solution for dealing with
imbalanced data.

Trajectory databases tend to be imbalanced due to differ-
ent reasons. For instance, considering the TUL problem and
the three LBSNs datasets (Gowalla, Brightkite, Foursquare
NYC), some users check in more frequently than others,
and the IRs of these datasets are respectively 3.75, 5.56, and
2.62, as shown in Figure 1.

Figure 1: Distribution of users’ sub-trajectories for three tra-
jectory datasets

For the trajectory classification problem, DeepeST em-
ploys LSTM/BLSTM (Schuster and Paliwal, 1997) and em-
beds location, time, or any features associated with a tra-
jectory (or sub-trajectory) to jointly learn more meaningful
representations of the trajectory data, which boosts Deep-
eST’s performance. In this paper, we provide the following
contributions: (1) we explore different approaches for cop-
ing with DeepeST to deal with imbalanced training data; (2)
we extend the related works with papers that face the im-
balanced data problem; (3) we compare the deep learning
models for trajectory classification from multidimensional
data; (4) we perform an extensive experimental evaluation
over three real-world imbalanced datasets, where we assess
the validity of our proposal in terms of quality of results.

Related Work
In this paper, we tackle the trajectory classification problem
in imbalanced datasets. In this section, we first present the
classification trajectory problem and then the imbalanced
dataset problem.

Trajectory Classification
We claim that we classify sub-trajectories since our training
set is derived from the segmentation of trajectories, as we
will explain later. For the sake of brevity, from now on, we
will use the term trajectory classification in place of sub-
trajectory classification.

Trajectory classification is one of the widely studied prob-
lems on trajectory pattern mining over the years. In the be-
ginning, trajectory classification focused on detecting pat-
terns of mobility from raw trajectories using machine learn-
ing methods (Zheng et al., 2008; Patterson et al., 2003; Fang
et al., 2016). One of the first methods for trajectory clas-
sification was TraClass, proposed by Lee et al. (2008) that
supports only the spatial dimension. Patel extended the Tr-
aClass to support both the spatial and the time dimensions
in (Patel, 2013). Machine learning methods can handle tra-
jectories, but they demand a feature extraction process, and
they suffer from the curse of dimensionality.

More recently, studies have investigated Deep Learning
models to link trajectories to their generating users. TULER
was the first model introduced in (Gao et al., 2017) for iden-
tifying and linking a large number of check-in trajectories to
their generating-users using RNN based models. TULVAE,
also using RNN, was proposed in (Zhou et al., 2018) after
the TULER and enhanced in (Zhou et al., 2019), a generative
model to mine human mobility patterns, which aims at learn-
ing the implicit hierarchical structures of trajectories and al-
leviating the data sparsity problem with the semi-supervised
learning. These models are limited since they only deal with
a spatial feature and do not consider other dimensions that
are important for classification (e.g., the temporal informa-
tion).

MARC (May Petry et al., 2020) and DeepeST (blind),
both tackle trajectory classification problem for multidimen-
sional data. Both proposals focus on the different spatial,
temporal, and semantic attributes that characterize multi-
dimensional trajectories. MARC uses a multi-attribute em-
bedding layer to encode these heterogeneous dimensions.

MARC outperforms BITULER, TULVAE, and other mod-
els in (May Petry et al., 2020). DeepeST outperforms BIT-
ULER, TULVAE, Random Forest, and XGBoost in (blind).
However, both MARC and DeepeST do not handle imbal-
anced datasets and use different spatial representation ap-
proaches (MARC uses GeoHash linked to a dense layer, and
DeepeST uses Grid Index linked to an embedding layer). Be-
yond providing a solution for imbalanced data for trajectory
classification, this work compares both models for trajectory
classification from multidimensional data.

Imbalanced Data in Deep learning Models
An imbalanced classification problem is when the distri-
bution of examples across the known classes is biased or
skewed. The distribution can vary from a slight bias to a se-
vere imbalance. In other words, the number of samples in the
minority class is smaller than the majority class, considering
the proportion (for example, twice large or more (Fernández
et al., 2008)).

Most of the classifiers assume that the data is balanced
and evenly distributed in each class. Data imbalance can
lead to unexpected mistakes and even severe consequences
in the data analysis, especially in classification tasks, since
the algorithm does not learn the patterns in minority classes.
In general, there are two strategies to solve the imbal-
anced datasets problem: re-sampling and cost-sensitive re-
weighting (Haixiang et al., 2017).

Using resampling methods, we modify the dataset itself
by adding and removing samples based on three approaches:

1. Over-sampling: we increase the number of samples in the
minority class to balance the classes (main techniques are
SMOTE and randomly duplicating the minority samples);

2. Under-sampling: we eliminate samples from the majority
class (an effective method is random sampling);

3. Hybrid methods: We combined the methods of oversam-
pling and under-sampling.

Using approaches based on cost-sensitive re-weighting,
we influence the loss function by assigning relatively higher
costs to examples from minor classes and assigning rel-
atively smaller costs to majority classes. In this way, we
can control the level of imbalance of the dataset. Consid-
ering the deep learning context where we use recurrent neu-
ral networks, resampling approaches as over-sampling may
either introduce large amounts of duplicated samples, slow
down the training, and make the model susceptible to over-
fitting. Using under-sampling, we may discard valuable ex-
amples that are important for the algorithms. Due to these
limitations, we focus on methods based on cost-sensitive re-
weighting.

In the literature, deep learning models as (Yan et al., 2016;
Lin et al., 2017; Cui et al., 2019; Wang et al., 2016) evaluated
different loss functions and strategies based on cost-sensitive
re-weighting. We can consider two main loss functions to
classify tasks using deep learning models: (1) Focal loss ap-
plies a modulating term to the cross-entropy loss to focus on
complex negative examples. The focal loss proved to be sim-
ple and highly effective, considering its accuracy and speed

results compared to state-of-the-art (Lin et al., 2017); (2)
Class-Balanced Loss (CBCE) defines a sufficient number of
samples as the volume of samples. CBCE provides two main
advantages over the focal loss (1): CBCE finds an effective
number of samples for each class; (2) CBCE is parameter-
free. In the focal loss, the training takes longer, as the user
needs to adjust the two parameters. For these two reasons
and considering that CBCE outperforms other state-of-the-
art functions, as shown in (Cui et al., 2019), we consider
using CBCE as a loss function in DeepeST.

Problem Definition
Let a trajectory TRj be a sequence of points sorted in
time [p1, .., plenj]. Here, pi (1 ≤ i ≤ lenj) is a tuple
(li, ti, Ai), such that li is a location point at time ti, and
Ai = [a1, ..., am] is a sequence of m attributes linked to
the trajectory (e.g velocity, acceleration, geographic infor-
mation, among others).

For sake of brevity, the location point li is a spatial co-
ordinate e.g., latitude and longitude collected from a GPS
device, or li can refer to check-in or stop location (it can be
a POI location, for instance). It is worth to mention that if
a trajectory is not linked to any semantic information, then
Ai = ∅.

For simplicity, in this work, we represent each location li
composed of latitude and longitude from a trajectory TR in
a spatial grid cell, however it could be in any well-defined
geographical space. We also map each timestamp ti to a
time slot in T = {t1, t2, ..., tw}, such that T ∈ IRw. A
time slot could be a regular time interval, for instance, some
minutes, hours, days or weeks. Finally, in order to reduce
the computational complexity and capture richer knowledge
of sub-trajectory patterns from trajectories, we segment the
trajectories into sub-trajectories. There are several methods
for trajectory segmentation based on the shape of a trajec-
tory, time interval, and semantic meanings Zheng (2015).
Since trajectory segmentation is not at the core part of this
work, we adopt the simplest method based on the time inter-
val to trajectories. A trajectory [pq1 , pq2 , ..., pqn], such that
(1 ≤ q1 < q2 < ... < qn ≤ lenj , where lk = lk−1+1) is
called a sub-trajectory of Sj . We are now ready to formulate
our prediction problem for sub-trajectories.

Problem Statement

Given a set of sub-trajectories S̃ = {S1, S2, ..., Sz}, the task
is predict the category by linking each sub-trajectory Si ∈ S̃
to a label y ∈ Y = {y1, ..., yo}. Notice that our problem
is generic, Y can be a set of transportation mode (car, bus,
bike or walk), a set of users that are owners of the trajectory
or any category feature of other domains. In our problem,
we consider imbalanced datasets (Imbalance Ratio > 2 Fer-
nández et al. (2008)). Therefore, there exist S̃yi , S̃yj ⊂ S̃
two sets of trajectories in S̃ tagged with the labels yi and yj ,
respectively, such that |S̃yi | > |S̃yj |, i.e., the number of tra-
jectories tagged with yi is at least twice larger than the one
tagged with yj .

DeepeST - Deep Learning for Sub-Trajectory
classification

In this paper, we extend a deep learning model, called Deep-
eST, for the trajectory classification problems in imbalanced
domains. DeepeST receives a fit sequence of features like
location, time, and any other attributes annotated in a sub-
trajectory and outputs the predicted label or class.

Sub-trajectory encoding
The first problem in dealing with sub-trajectories is the data
representation. The spatial dimension of trajectories is com-
posed of two attributes, latitude, and longitude. Both are sep-
arate tributes that represent a single geographic location.

DeepeST creates a spatial grid 2D with a fixed size cell
in meters covering all points in the dataset. An integer num-
ber represents each cell into the grid, and a user can specify
the cell size: high values to cell size (10000 meters, e.g.)
become the problem more challenging to capture the move-
ment of an object within a small geographic space (for in-
stance, a parking car). For smaller cell sizes, we can cap-
ture the switch between different geographical areas during
the movement—however, the number of cells in the grid in-
creases. Finally, we provide the Grid Index of each cell to
the embedding layer.

For temporal representation, the timestamp data usually
is a feature composed of day, hour, month, year, minute, and
second (for instance, 2008/02/02 22:00:00). For each times-
tamp attribute, DeepeST extracts the hour of the day and
the day of the week. Finally, we apply one-hot encoded to
all available features and use it to input in its corresponding
embedding layer.

DeepeST architecture
DeepeST architecture is composed of embedding layers to
each input, a concatenation layer, a recurrent layer (LSTM
or BILSTM), and a fully connected layer with softmax as the
activation function. The overview of DeepeST is illustrated
in Figure 2.

Figure 2: DeepeST model to sub-trajectory classification

SoftmaxConcat
LSTM
or

BLSTM
yo

y2

DeepeST Model
y1

. . .

[S1,..., Sz]

[l1 , ..., ln]

[t1 , ..., tn]

[a11 , ..., a1n]

[am1 , ..., amn]

. . .

Embedding to am

. . .

Embedding to a1

Embedding Time

Embedding location

Si

DeepeST incorporates embedding layers to receives se-
quences from the sub-trajectory. An embedding is a rela-
tively low-dimensional space into which he/she can trans-
late high-dimensional vectors. Sub-trajectory embedding al-
leviates the curse of dimensionality and maintains the input
data’s proximity with similar patterns in a new dimensional
space.

DeepeST uses a recurrent layer that receives input from
a feature vector, but it presents embedding layers to each
sub-trajectory attribute. A concatenation layer is defined be-
tween the embedding layers and the recurrent layer to join

embedding vectors in unique input features that will be used
in the recurrent layer, as shown in Figure 2.

We use a Recurrent Neural Network (RNN) for trajec-
tory classification due to its capacity to learn complex pat-
terns from a sequence, unlike feedforward neural networks.
DeepeST employs an LSTM (Hochreiter and Schmidhuber,
1997), which has been extensively used to process variable-
length input and can allow highly non-trivial long-distance
dependencies to be easily learned. We also examined a
Bi-directional LSTM (BILSTM) in our DeepeST model
(Schuster and Paliwal, 1997), which can take into account
an effectively infinite amount of context on both sides of a
sub-trajectory and eliminates the problem of limited context
that applies to any feedforward model.

Loss Fuctions
DeepeST works with two loss functions: Categorical Cross-
Entropy (CCE) and the Class-Balanced Cross-Entropy Loss
(CBCE). CCE is a loss function to multi-class classification
tasks, where the labels are provided in a one-hot representa-
tion. Formally, CCE quantifies the difference between prob-
ability distributions to two or more classes. CCE considers a
single weighting factor for each class. Therefore, CCE may
not be appropriate for imbalanced databases.

On the other hand, CBCE is designed to address training
from imbalanced data by introducing a weighting factor that
is inversely proportional to the effective number of samples
(Cui et al., 2019). An effective number of samples can be
calculated by a formula (1 - βn)/(1-β), where n is the num-
ber of samples and β ∈ [0, 1) is a hyperparameter. In other
words, a class-balanced re-weighting term is inversely pro-
portional to the effective number of samples is added to the
loss function. The class-balanced loss term can be applied to
a wide range of deep networks and loss functions (Cui et al.,
2019).

Optimization in DeepeST
Overfitting is a major problem in RNN due to a large num-
ber of weights and biases. To alleviate overfitting, we de-
termined a dropout layer for regularization. Dropout is a
strategy radically different from other approaches, since it
changes the network structure itself, instead of the cost func-
tion. Suppose we have a training set X and the correspond-
ing desired output y. Normally, we train by direct propaga-
tion of X across the network, and then the backpropagation
algorithm computes the error to the gradient. When we use a
layer dropout, this process is modified. We eliminate by ran-
domly (and temporarily) some of the neurons hidden in the
network, but leave the input and output neurons untouched.
Heuristically, if we abandon different sets of neurons, we are
training with various neural networks. Therefore, dropout
can reduce overfitting, whereas other networks adapt in dif-
ferent ways.

Experimental evaluation
In this section, we present the experimental evaluation to
evaluate DeepeST in terms of quality prediction. We start by
providing details about the datasets, the experimental setup,
the baselines, followed by the experimental evaluation.

Datasets
We conduct our experiments on three datasets: (1) a pub-
lic dataset that contains check-ins of users around the world
extracted from Brightkite 1 between April 2008 and Octo-
ber 2010. (2) a public dataset that contains trajectories of
check-in extracted from Gowalla 2 between February 2009
and October 2010; (3) a public dataset of Foursquare in New
York City (NYC), USA, collected between April 2012 and
February 2013. Gowalla, Brightkite, and Foursquare NYC
have been widely used in several works on trajectory clas-
sification (Gao et al., 2017; Zhou et al., 2018, 2019; May
Petry et al., 2020) and their IRs are respectively 3.75, 5.56,
and 2.62, as presented in Figure 1.

Performance Comparison
There are four variations for DeepeST concerning the net-
work layers and loss functions: two with BILSTM, one
configured with CCE loss (DeepeST-BILSTM-CCE), and
another CBCE loss (DeepeST-BILSTM-CBCE). Two with
LSTM, one configured with CCE loss (DeepeST-LSTM-
CCE), and another with CBCE loss (DeepeST-LSTM-
CBCE). We compare DeepeST variation with three state-of-
the-art approaches from the field of deep learning classifi-
cation: BiTULER (Gao et al., 2017), TULVAE (Zhou et al.,
2018), and MARC (May Petry et al., 2020).

Experimental setup
The classification task is to predict the corresponding user
who generated a given trajectory. We use segmentation
based on time and create weekly sub-trajectories from each
user check-in, as performed in (May Petry et al., 2020). We
selected only sub-trajectories of users who have at least 15
weekly sub-trajectories because we will have at least two
samples for each user in the validation set and the test set.
For the Grid index approach in DeepeST, we created a vir-
tual grid cell and set a cell size of 30m, covering all points
for each dataset. Therefore, each latitude and longitude is
mapped to a 30m x 30m region. We use 30 meters because
we believe it is sufficient to separate even small points of
interest, like bars, homes, and restaurants. For the GeoHash
representation used in MARC, we use Base32 in GeoHash
for building instance, as performed in (May Petry et al.,
2020).

To validate the models, we split performing a stratified
holdout evaluation in each dataset, considering 70% to train-
ing, 15% to validation, and 15% to test. We shuffle sub-
trajectory data, run the baselines algorithms ten times for
each dataset, and compared the models using Accuracy,
Macro Precision, Macro Recall, and Macro F1-Score.

To find the optimal set of hyperparameters, we apply the
grid-search technique to combine several hyperparameters
for each model. Although it is extremely computationally
expensive and may take your machine quite a long time to
run, grid-search ensures that we find the best set of hyper-
parameters considering each model and dataset. We keep 64
as the batch size and 0.001 as the learning rate for all the

1https://snap.stanford.edu/data/loc-Brightkite.html
2https://snap.stanford.edu/data/loc-gowalla.html

models and 0.5 as dropout (dp). We also vary the units (un)
of the recurrent layers, the embedding size to each attribute
(es), and the units of the dense layer used after the GeoHash
attribute (ds). We determine a first stopping callback, which
is a stop training when, in our case, the accuracy has stopped
improving. We set the early stopping as 20 for the patience
argument to minimize overfitting, i.e., the number of epochs
that produced the model’s accuracy with no improvement af-
ter which training should be stopped. For further details, we
refer to Keras library 3. Exclusively for TULVAE, besides
vary the units (un) and the embedding size (es) of the POI
identifier, we also vary the latent variable (z). For more de-
tails about parameters or reproducibility purposes, we made
the source code available on GitHub 4.

Classification results
From the results reported in Tables 1, 2 and 3, we sum-
marizes the performance comparison between the variants
of DeepeST, MARC, BITULER, and TULVAE using all
available features for the three datasets. We highlighted the
two best values in bold, and the third one in underlined.
For what concerns DeepeST variations and MARC, a sub-
trajectory S is a sequence with each of the following at-
tributes (igi, hri, poii, wki), where ig is the grid index cell,
and poi is the POI identifier, wk is the weekday, and hr is
the hour); BITULER and TULVAE only deal with one fea-
ture, so the input is a sequence of POI identifier as presented
in (Gao et al., 2017; Zhou et al., 2019).

Table 1: Classification results on stratified holdout evalua-
tion in the Brighkite dataset

Model Accuracy Precision Recall F1-Score
mean std mean std mean std mean std

DeepeST-BILSTM-CBCE 0,9729 0,0017 0,9716 0,0034 0,9691 0,0020 0,9669 0,0027
DeepeST-BILSTM-CCE 0,9757 0,0021 0,9738 0,0037 0,9695 0,0026 0,9687 0,0033
DeepeST-LSTM-CBCE 0,9735 0,0017 0,9715 0,0035 0,9693 0,0026 0,9668 0,0032
DeepeST-LSTM-CCE 0,9748 0,0019 0,9706 0,0043 0,9678 0,0031 0,9660 0,0036

MARC 0,9718 0,0033 0,9685 0,0061 0,9642 0,0043 0,9628 0,0052
BITULER 0,9520 0,0053 0,9470 0,0068 0,9350 0,0057 0,9364 0,0060
TULVAE 0,9581 0,0012 0,9459 0,0028 0,9426 0,0021 0,9403 0,0022

Table 2: Classification results on stratified holdout evalua-
tion in the Gowalla dataset

Model Accuracy Precision Recall F1-Score
mean std mean std mean std mean std

DeepeST-BILSTM-CBCE 0,9688 0,0021 0,9608 0,0024 0,9645 0,0016 0,9574 0,0022
DeepeST-BILSTM-CCE 0,9665 0,0044 0,9577 0,0075 0,9619 0,0039 0,9541 0,0058
DeepeST-LSTM-CBCE 0,9682 0,0016 0,9609 0,0053 0,9638 0,0031 0,9568 0,0043
DeepeST-LSTM-CCE 0,9669 0,0024 0,9587 0,0062 0,9619 0,0037 0,9541 0,0051

MARC 0,9456 0,0060 0,9358 0,0122 0,9457 0,0063 0,9340 0,0091
BITULER 0,9008 0,0111 0,8964 0,0126 0,8927 0,0117 0,8782 0,0140
TULVAE 0,9199 0,0092 0,9240 0,0143 0,9210 0,0137 0,9110 0,0124

We can see that DeepeST with (LSTM/BILSTM) using
all features combined in sub-trajectory classification yields
improvements over the baselines on the three datasets, con-
sidering accuracy, precision, recall, and F1-score. DeepeST
takes advantage of the CBCE/CCE, data representation us-
ing Grid Index and embedding, and LSTM/BILSTM that
operates at embedding levels to learn the underlying user

3https://keras.io/
4https://github.com/nickssonarrais/DeepeST-FLAIRS

Table 3: Classification results on stratified holdout evalua-
tion in the Foursquare NYC dataset

Model Accuracy Precision Recall F1-Score
mean std mean std mean std mean std

DeepeST-BILSTM-CBCE 0,9957 0,0022 0,9961 0,0022 0,9948 0,0027 0,9947 0,0026
DeepeST-BILSTM-CCE 0,9933 0,0016 0,9930 0,0015 0,9919 0,0016 0,9918 0,0016
DeepeST-LSTM-CBCE 0,9927 0,0038 0,9931 0,0030 0,9915 0,0034 0,9915 0,0036
DeepeST-LSTM-CCE 0,9927 0,0021 0,9930 0,0020 0,9914 0,0020 0,9914 0,0021

MARC 0,9893 0,0052 0,9913 0,0044 0,9883 0,0052 0,9878 0,0058
BITULER 0,9890 0,0039 0,9917 0,0042 0,9877 0,0041 0,9880 0,0049
TULVAE 0,9820 0,0050 0,9854 0,0043 0,9809 0,0052 0,9798 0,0058

categories from check-ins sub-trajectory data. RNN models
(LSTM/BILSTM) are proper models to learn from tempo-
ral sequences as sub-trajectories. We can notice that MARC
outperforms BITULER and TULVAE across all metrics in
most datasets. Both MARC and DeepeST built a more rep-
resentative model using a set of variables instead of only
using a POI identifier. As we can see, only POIs identifica-
tion is not sufficient to distinguish different users in Gowalla
and Brightkite. In Foursquare NYC, all models reached val-
ues above 98% considering accuracy, precision, recall, and
above 97% considering F1-macro. This occurs when only
the spatial feature is the relevant one to detect user mobility
patterns. It is worth noting that results of MARC and Deep-
eST for all datasets could be higher if there exist more rel-
evant features to separate the classes from different users in
the dataset (maybe features based on external events and fea-
tures that characterize different people). The expert’s view
of the application domain can be essential to increase the
performance of the model.

Comparing DeepeST variations and MARC, note hat
DeepeST yields improvements over MARC on the three
datasets, considering accuracy, precision, recall, and F1-
score. MARC uses GeoHash linked to a dense layer to repre-
sent the spatial feature. While DeepeST uses the Grid Index
linked to an embedding layer. Using the Grid Index linked
to an embedding provided better results because an embed-
ding layer approximates the input data to recurrent neural.
The embedding output is denser than the dense layer output.
Grid index generates an integer vector that can be directly
provided for an embedding layer, considering that we use a
padding sequence to ensure the fixed-size sequence. Using
the GeoHash approach presented in (May Petry et al., 2020),
there is a transformation to a binary matrix that cannot pro-
vide input for an embedding layer. In this case, the GeoHash
uses a dense layer that makes the sparse data to the RNN.
When we use a dense layer, we lose the ability to make the
data denser, as in the embedding layer.

Regarding DeepeST and its variations, in general, we
note that DeepeST-BILSTM provided improvements over
DeepeST-LSTM. DeepeST-BILSTM runs its inputs in two
ways, one from past to future and one from future to past.
In our experiments, DeepeST-BILSTM achieved slightly
more significant results than DeepeST-LSTM for the three
datasets. DeepeST-BILSTM takes into account an effec-
tively infinite amount of context on both sides of a sub-
trajectory position and eliminates the problem of limited
context that applies to any feed-forward model. It is impor-
tant to highlight that the results between DeepeST-BILSTM
and DeepeST-LSTM are very close. However, DeepeST-

BILSTM proved better and faster to understand the context
using past and future information.

If we look at the solutions for coping with imbalanced
datasets, we can notice that CBCE loss provides improve-
ments in the recall’s model. Note that DeepeST-BILSTM-
CBCE achieved the highest recall values in all the datasets.
CBCE quantifies the weighting factor inversely proportional
to the effective number of samples per class. In other words,
considering the dataset distribution to each user, the CBCE
provides a lower weight to the majority classes and a higher
weight to the minority classes. In this way, the algorithm
learns the patterns of the minority classes. When we use
CCE, the weight factor is the same for all classes, so the
algorithm does not learn the patterns in minority classes.

Conclusion
In this paper, we investigate the trajectory classification
problem from imbalanced datasets for classifying a cat-
egory from a set of labels. We evolved a deep learning
model, called DeepeST (Deep Learning for Sub-Trajectory
classification), to identify any category from many sub-
trajectories extracted from imbalanced datasets. We believe
that DeepeST is the first model for trajectory classification
that provides resources to deal with imbalanced datasets. We
conducted extensive experiments on three real datasets ex-
tracted from LBSNs to evaluate DeepeST performance with
state-of-the-art approaches from the field of Deep Learn-
ing (MARC, BITULER, and TULVAE). DeepeST achieves
more expressive values of accuracy, precision, recall, and f1-
score in all experiments. Although we evaluated the classi-
fication considering the Trajectory-User Linking problem,
DeepeST is generic enough to deal with different trajec-
tory classification problems in imbalanced domains, such
as transportation mode inference, the prediction to the next-
stop points.

As future directions, first, we aim at analyzing other loss
functions in different scenarios. We can integrate more func-
tionalities into DeepeST to become a framework for trajec-
tory classification. Finally, although we achieved very high
results across all datasets, we aim to study how to improve
accuracy using other deep learning techniques, like attention
mechanisms.

References
blind. Blind. In blind.

Cui, Y.; Jia, M.; Lin, T.-Y.; Song, Y.; and Belongie, S. 2019.
Class-Balanced Loss Based on Effective Number of Sam-
ples.

Fang, S.-H.; Liao, H.-H.; Fei, Y.-X.; Chen, K.-H.; Huang,
J.-W.; Lu, Y.-D.; and Tsao, Y. 2016. Transportation
modes classification using sensors on smartphones. Sen-
sors 16(8):1324.

Fernández, A.; García, S.; del Jesus, M. J.; and Herrera, F.
2008. A study of the behaviour of linguistic fuzzy rule
based classification systems in the framework of imbal-
anced data-sets. Fuzzy Sets and Systems 159(18):2378–
2398.

Gao, Q.; Zhou, F.; Zhang, K.; Trajcevski, G.; Luo, X.; and
Zhang, F. 2017. Identifying human mobility via trajectory
embeddings. In IJCAI, volume 17, 1689–1695.

Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue,
H.; and Bing, G. 2017. Learning from class-imbalanced
data: Review of methods and applications. Expert Systems
with Applications 73:220–239.

Hochreiter, S., and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation 9(8):1735–1780.

Lee, J.-G.; Han, J.; Li, X.; and Gonzalez, H. 2008. Tra-
class: trajectory classification using hierarchical region-
based and trajectory-based clustering. Proceedings of the
VLDB Endowment 1(1):1081–1094.

Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P.
2017. Focal Loss for Dense Object Detection.

May Petry, L.; Leite Da Silva, C.; Esuli, A.; Renso, C.; and
Bogorny, V. 2020. MARC: a robust method for multiple-
aspect trajectory classification via space, time, and seman-
tic embeddings. International Journal of Geographical
Information Science.

Patel, D. 2013. Incorporating duration and region associ-
ation information in trajectory classification. Journal of
Location Based Services 7(4):246–271.

Patterson, D. J.; Liao, L.; Fox, D.; and Kautz, H. 2003. In-
ferring high-level behavior from low-level sensors. In In-
ternational Conference on Ubiquitous Computing, 73–89.
Springer.

Schuster, M., and Paliwal, K. K. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Signal
Processing 45(11):2673–2681.

Wang, S.; Liu, W.; Wu, J.; Cao, L.; Meng, Q.; and Kennedy,
P. J. 2016. Training deep neural networks on imbalanced
data sets. In 2016 International Joint Conference on Neu-
ral Networks (IJCNN), 4368–4374. IEEE.

Yan, Y.; Chen, M.; Shyu, M. L.; and Chen, S. C. 2016. Deep
Learning for Imbalanced Multimedia Data Classification.
In Proceedings - 2015 IEEE International Symposium on
Multimedia, ISM 2015, 483–488. Institute of Electrical
and Electronics Engineers Inc.

Zheng, Y.; Liu, L.; Wang, L.; and Xie, X. 2008. Learn-
ing transportation mode from raw gps data for geographic
applications on the web. In Proceedings of the 17th inter-
national conference on World Wide Web, 247–256. ACM.

Zheng, Y. 2015. Trajectory Data Mining. ACM Transactions
on Intelligent Systems and Technology 6(3):1–41.

Zhou, F.; Gao, Q.; Trajcevski, G.; Zhang, K.; Zhong, T.; and
Zhang, F. 2018. Trajectory-user linking via variational
autoencoder. In IJCAI, 3212–3218.

Zhou, F.; Yin, R.; Trajcevski, G.; Zhang, K.; Wu, J.; and
Khokhar, A. 2019. Improving human mobility identifica-
tion with trajectory augmentation. GeoInformatica 1–31.

