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Abstract 

Major Depression Disorder (MDD) is a big problem in our 

society. MDD can cause suicide and take families apart. When 

treatment with medications fail, mental healthcare 

professionals, use Electroconvulsive Therapy (ECT) to treat 

patients with MDD. During an ECT session, 

electroencephalogram (EEG) signals let the mental healthcare 

professionals record patients' brain activities which are helpful 

to decide whether the treatment was successful. However, there 

is no standard way to know how and with what intensity a 

healthcare professional needs to apply electroshock to treat 

patients with MDD. So far, to our knowledge, researchers have 

used multi-parametric magnetic resonance imaging (MRI) 

techniques combined with statistical methods and/or linear 

machine learning algorithms to predict patients’ responses to 

ECT. However, the aforementioned methods are very 

expensive and time-consuming. In this study, we will be using 

Deep learning algorithms to detect the effectiveness of ECT 

sessions based on the EEG. 

 

1  Introduction    

Major Depression Disorder (MDD) is the cause of more 

than one million suicide per year (Sun et al. 2020). 

Electroconvulsive (ECT) therapy has been used by 

mental healthcare professionals since 1930 to treat 

patients with MDD (Tsuchiyama et al. 2005). Yet, there 

is no methodological technique to individualize ECT in 

order to obtain successful results. So far, most of the 

researchers used multi-parametric magnetic resonance 

imaging (MRI), functional magnetic resonance imaging 

(fMRI), and/or resting state-fMRI techniques combined 

with statistical methods and/or support vector regression 

model (Gong et al. 2020, Gärtner et al. 2020, Van 

Waarde et al. 2015), to categorize and predict the success 

or failure of the ECT method with 67-70% accuracy (Sun 

et al. 2020).  Furthermore, most of the aforementioned 

studies suggest frontal and temporal networks of the 

brain as good predictors for the success or failure of  ECT 
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treatments. In another study, (Min et al. 2020), limited 

their experience to MDD patients suffering from 

schizophrenia. They used a random-forest algorithm 

with fMRI for their predictions. Their results suggest 

higher connectivity in the patient’s frontal area with 82% 

accuracy of predicting successful and unsuccessful 

ECTs. Another limitation with this study is that the 

authors only used patients with schizophrenia.  
Furthermore, using MRI/ fMRI/rs-fMRI with ECT is 
very expensive and time consuming. In this study, we 
suggest the use of Deep learning algorithms to predict 
the result of the ECT from patient pre-during-post shock 
EEGs. Comparing to MRI family techniques mentioned 
above our technique uses patients' brain EEGs pre-shock 
to predict the success or failure of the ECT techniques. 
This makes our approach less expensive and timely 
efficient comparing to the above techniques. Deep 
learning algorithms are capable of learning unseen 
patterns (Faghihi et al. 2020, Robert et al. 2020). We 
believe that DLs can help us to individualize ECT 
techniques for patients suffering from MDDs. 
 
Among others, they are used for detecting different types 
of cancers (Cruz-Roa et al. 2013), sentiment analysis 
(Baziotis, Pelekis and Doulkeridis 2017), detecting 
cataract (Yu et al. 2019).  

However, to our knowledge, so far, there is no study used 

deep learning algorithms for predicting the success or 

failure of the ECT technique only based on EEG data.  

One reason is that EEGs are very complex and DLs 

cannot use EEGs directly (Hu and Zhang 2019). 

Furthermore, while some of the mental health 

professionals may use lateral regions of the brain for the 

ECT shocks, others may use lateral and frontal regions. 

This will result in DLs behave differently when the 

nature of data changes (Chen et al. 2020). 

 
Thus, before applying DLs to data, one needs to do 
preprocessing and adapting the data in a way that DLs 
can process them.  
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In what follows, we will first very briefly explain EEGs 

preprocessing techniques. We will also explain how one 

can distinguish between a good and bad ECT using EEG 

traces. We then, very briefly explain DL architecture we 

used in this study. Finally, we will compare different 

DLs performance for ECT outcome prediction. 

 

2  Pre-Processing EEGs 

 

This section is divided into two subsections 1) using 

correlation technique to find whether there are 

correlations between Hyperpolarization, Depolarization, 

and Repolarization phases and post-shock phases; 2) 

Using noise reduction techniques to prepare our data for 

deep learning algorithms. 

2.1 Correlation 

In the first phase of this study, we wanted to test whether 

there are correlations between EEGs segments using 

cross-correlation technique (explained below). Another 

technique that is widely used in the field of channel 

processing is Fourier transform (Hu and Zhang 2019). 

Roughly speaking, Fourier transform breaks a channel 

into an alternative representation that is characterized by 

sinus and cosines. However, using Fourier transform 

may result in losing an important portion of data. 

 

Before explaining cross-correlation technique, we will 

explain very briefly EEG records of an ECT experiment. 

An EEG signal can be divided into pre-during-post shock 

phases. 

 

Figure 1,  shows the during shocking phase of an EEG 

channel after applying electroshock to an MDD patient’s 

scalp. The during shocking phase starts with a 

hyperpolarization phase, followed by repolarization and, 

 
1 The human brain has about 100 billion neurons and an area of 1,200 
square centimeters. Given that the area of an electrode is about one 

then depolarization phases. In Figure 1, the x-axis 

corresponds to time and the y-axis corresponds to the 

amplitude of the EEG channel. The depolarization phase 

finishes by oscillation around zero on the x-axis. It is 

worth mentioning that the trace in Figure 1 is the average 

output of about one hundred million neurons1 activities 

after applying an ECT shock to the patient’s brain. 

 
Figure 2, demonstrates the last part of two complete EEG 
channels gathered from two patients' scalps during the 
electroshock procedure. The EEGs contain a patient’s 
pre-during-post shock phases. To distinguish the good 
and bad ECTs, healthcare professionals use different 
criterion such as the quality of the pattern of the crisis, 
and/or the length of the crisis and/or the smoothness of 
the end of the EEG channel. If the end of the channels 
becomes smooth as demonstrated in Figure 2.A, the ECT 
session is considered successful.  
 
However, if the end of the channel is not smooth (Figure 
2.B), the electroshock procedure is considered 
unsuccessful. In this article, for convenience, the EEG 
associated with a good ECT test is called a good EEG 
and vice versa. 

 

Figure2: The horizontal axis is time, and its length equals 2 

seconds (2000ms). The vertical axis is amplitude. The last 

segment (which is underlined by an orange arrow) determines 

to what extent the trace is good or bad. 

Postulated by one of our mental healthcare professional 

colleagues, the first hypothesis in our work was that there 

should be some type of correlation between EEGs’ 

Hyperpolarization, Depolarization, Repolarization 

phases (Figure 1), and final phase of the EEG (Figure 2, 

the interval between 1500-2000). In our EEG database, 

each EEG file contains up to 4 channels. That is, to apply 

the ECT, our healthcare professional used two electrodes 

on the frontal lobe, and two on the temporal lobe, 

symmetrically. 

 

square centimeter. Therefore each electrode records the electrical 
activity of approximately 83 million neurons. 

 

Figure 1. Hyperpolarization, Depolarization, and 

Repolarization phases. 



The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-19) 
 

3 
 

To verify our above hypothesis, we used the cross-

correlation technique. The cross-correlation between 

two EEG channels measures the level of dependency 

between hyperpolarizations (HP), depolarizations (DP), 

and the repolarizations (RP) phases of the channels. 

 

More specifically, If the cross-correlation of two EEG 

channels is 1 at a time t0,  the EEGs are either 

hyperpolarized or depolarized, or repolarized. That is, 

the amplitudes for the two channels are equal.  

 

Similarly, if the cross-correlation between two EEG 

channels is 0.8 at time t1, then the EEGs are 

hyperpolarized, depolarized, or repolarized at the t1 and 

the amplitudes of their HP or RP or DP are equal to 80%. 

 

Any negative correlation means the channels are 

correlated but their behavior is the opposite. That is if the 

HP value is increasing the RP or DP values are 

decreasing. Furthermore, the values around zero means 

EEG channels are acting independently (Dowdy, 

Wearden, & Chilko, 2011). 

 

The EEGs we used in this study are gathered on a daily 

basis at the St-Marie hospital at Trois-Rivières (QC) by 

mental health professionals and then anonymized for 

research usage. So far, we have 290 EEGs traces. The 

gathering of EEGs by mental health professionals at the 

St-Marie hospital continues as the more EEG we have, 

the better results we obtain from our neural network 

(explained below). We applied cross-correlation 

technique to the above 290 EEG traces.  

Every EEG has an  average length of 75,000 

milliseconds (75sec) in total. However, according to our 

hypothesis, we need to extract the HP , RP and DP parts 

of the EEGs. Once extracted, we apply cross-correlation 

technique to the aforementioned parts of the EEGs and 

the last part of the EEGs which contain the successful or 

failed ECT (Figure 2).   
 

Because the total average of EEG files' length is 75 

seconds, we need to divide them into smaller segments. 

In this article, we split the EEG files into two-seconds 

segments. 

Therefore, we have (75÷2≈37)×(75÷2≈37)×202 cross-

correlation plots. That is, after applying cross-correlation 

technique to the segmented EEGs, we will obtain 

202×37×37 plots. As an example, Figure 3, shows the 

plot of two EEG segments with the length of two seconds 

(Figure 3. A and Figure 3. B). 
 

Instead of 2 seconds, one can divide the EEGs into larger 

or smaller segments. Choosing smaller numbers than the 

number 2, makes cross-correlations comparison 

meaningless. That is, the segment has very little 

information that decreases the cross-correlation 

technique’s performance. On the other hand, choosing 

larger numbers make comparisons difficult as every 

segment contains too much information.  After dividing 

EEG channels into segments of two seconds, we: 1) 

compared all segments of the good and bad EEGs; 2) 

extracted the HPs, RPs, DPs, and the last segment of the 

good and bad EEGs. 

2.1.1 Comparing two seconds segments 

In this subsection, using cross-correlation technique, we 

compared all the 2-seconds segments we extracted from 

the entire data set. One problem with the Cross-

correlation technique is it compares every segment with 

themselves which causes redundancy in comparison.   
 

So, in order to avoid calculating duplicate cross-

correlations, we filtered the extracted segments so it only 

considered the unique combination of 2-second 

segments.  

Figure 3: The red subplot (Figure 3.C) demonstrates the cross-

correlation of two segments (Figure 3.A, Figure 3.B) from  

the twelfth EEG signal of our dataset. The horizontal axis is 

time (ms). In Figure 3.A and Figure 3.B, the vertical axis is 

EEG amplitude and in Figure 3.C is correlation value. 

Figure 4: In Figure 4.A and B, the Y-axis shows computed 

averages of the cross-correlations of different segments for 

the first channel of the good EEGs (Figure 4.A) and bad 

EEGs (Figure 4.B). The X-axis shows the EEG segment pair 

numbers. 
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We then, averaged the cross-correlations of every 2-

second segments for the entire data set. In our case every 

comparisons produced one single point which is 

demonstrated in Figure 4.A,B. Figure 4.A, B shows the 

result of the filtering process and averaging of the whole 

data set which resulted in more than 5000 points (each 

considered a point in the Figure 4). 

It must be noted that according to the differences 

between channel size (Figure 4.A,B good EEGs with 

5000 and bad EEG with 6000 length), we obtain different 

data points on the x-axis.  

 

In Figure 4, the average correlation for the good EEGs is 

equal to 0.6 and 0.25 for the bad EEGs ( maximum 

should be equal to 1). 
 
In Figure 5, we see the average cross-correlation for the 
second channel of the good EEGs and bad EEGs which 
are equal to 0.6 and 0.4 respectively.  We obtained 
similar results for the third and fourth channels. Our 
results show that there are some correlations in general 
between EEGs segments. However, we would like to 
remind you that so far, we have not extracted HPs, RPs 
and DPs from two seconds segments (see below).  
 

 

It is also worth mentioning that in Figures 4 and 5, at 

some points the spikes' values are almost one which are 

considered as outliers in our case. This is because the 

number of spikes is less than 10, while the total number 

of calculated cross- correlations is more than 5,000. 

In the next subsection, we will analyze the possible 

correlations of HPs, RPs, DPs with ECT outcome. 

2.1.2 HPs, RPs, DPs cross-correlation with ECT 

results 

In this subsection, we will test our mental healthcare 

professional colleagues’ hypothesis which postulates 

that there should be a logical connection between the 

HPs, DPs, RPs, and the ECT outcomes.  
To do so, we extracted, concatenated, and averaged the 
HPs, RPs, and DPs segments from the entire EEGs data 
set. 
Since, we obtained very similar results for the cross-
correlation of HPs, DPs, RPs, here we will briefly 
explain RPs (Figure 6). 

It must be noted that every EEG contains many HPs, 

DPs, RPs phases. We extracted and concatenated all RPs 

from the entire data set and obtained more than 100000 

points (Figure 6). We then, calculated the cross-

correlation of all RPs and the end of the good and bad 

EEGs. 

Most of the average cross-correlation values in Figure 6 

varies between -0.25 and 0.25, which is very low. 

However, there are some specific points that demonstrate 

good correlations. The number of these specific points 

are small comparing to the whole data set. Consequently, 

they cannot be considered as a solid indicator for the 

predictions of successful versus unsuccessful ECTs. 

We obtained similar results for HPs and DPs. That is, 

HPs, RPs, DPs cannot be considered as the good 

predictors of the successful and unsuccessful of ECTs 

(see the link to the code). 

Our next hypothesis was the use of Deep Learning 

algorithms (DLs) that uses patients’ EEGs pre-shock and 

during the shock phase in order to predict the successful 

and unsuccessful ECTs.   

However, EEGs contain noises which degrade 

substantially DLs performance. Thus, we must ideally 

delete or reduce the noises. For instance, patients’ fast or 

low winking results in different EEGs (Hu and Zhang 

2019). The noises directly affect DLs performance. In a 

preliminary experiment, we directly applied Long Short-

Term Memory (LSTM) (Hochreiter and Schmidhuber 

1997) to anonymized EEGs, without obtaining good 

results. 

Figure 5: In Figure 5.A and B, The Y-axis shows computed 

averages of the cross-correlations of different segments for 

the second channel of the good EEGs (Figure 5.A) and bad 

EEGs (Figure 5.B). The X-axis shows the EEG segment pair 

numbers. 

Figure 6: The Y-axis shows computed averages of the cross-

correlations of RPs. The X-axis shows the EEG segment pair 

numbers. 
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Consequently, one crucial problem when processing the 

EEGs gathered during ECT sessions is how to separate 

the useful data and noises.  Therefore, before we use the 

DLs to predict the ECTs results, we must 

reduce/suppress the noises. In the next section, we 

explain the noise reduction method we used in this study. 

2.2 Noise Reduction (NR) 

In order to do Noise Reduction (NR)  in our data, we 

used Moving Averages (MAs) or Moving Mean (MM) 

technique (Booth, Mount and Viers 2006). MA takes as 

input a dataset and creates many subsets of it. It then, 

returns the average of the subsets by smoothing subsets’ 

variations. This technique can be seen as noise reduction. 

Researchers use different versions of MA for noise 

reduction (Booth et al. 2006). We used a simple version 

of it (Figure 7): 

 

Where:  

Xk= The average of input signal amplitudes in ith-period. 
n= The nth point of output signal. 

k= Length of the periods. 

After applying the noise reduction (SMA), the data is 

ready to be fed into the Deep Learning algorithms (DLs). 

In the next section, we will create our DL. 

3 Deep Learning algorithms 

3.1 Predictor Neural Network Architecture 

In this section, we will examine another hypothesis. That 

is, there is a strong logical  relationship between the pre-

shock segment of the EEGs and the success or failure of 

the ECT results.  

 

To do so, we need to design and implement a hybrid 

architecture that is capable of detecting the temporal 

features of the EEGs and the relationships between 

different phases of the EEGs. 

 

Our hybride DL architecture (Figure 8) uses Long Short-

Term Memory (LSTM) (Hochreiter and Schmidhuber 

1997), Convolutiona Neural Networks (CNN) (Sainath 

et al. 2020), and Multi-layer Perceptron (Gardner and 

Dorling 1998).  

 

In this step, we used the same 2-second segments we 

used in subsection 2.1.1. Out of 290 EEG traces divided 

into 2-second segments, we considered 70% for training 

and 30% for test.  

 

 

 

In Figure 8,  the denoised and averaged data (see 

previous section) is first fed into a one dimensional CNN 

(32 neurons and a kernel with size 3). It then fed into two 

LSTMs-first having 512 neurons and the second 256 

neurons. 
 
Table 1 shows different configurations for our hybrid DL 
architecture. We obtained the best performance (82%) 
using the configuration in the first line in Table 1. 
 

Figure 7: The blue signal is the EEG traces from our dataset 

and the orange signal is moving average of the blue signal. 

The x axis is time, and the y axis is EEG amplitude which is 

between (0, 1) 

Figure 8: The Predictor CNN- Neural Architecture 

Formula 1: The Simple Moving average formula 
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Table1: Different configurations of our DL architecture 

4 Conclusion 

 
Currently, mental healthcare professionals (MHP) use 
trial and error method for the Electroconvulsive Therapy 
(ECTs) sessions. Consequently, a patient may 
experience many ECTs before noticing some results. 
This is a waste of time and resources. In this study, using 
only EEG traces gathered from MDD patients’ scalps, 
we used hybrid Deep learning algorithms to predict 
successful and unsuccessful ECTs. This is the first 
attempt toward creating methodological technique for 
individualized ECTs.  
 
It must be noted that we did not used expensive 
techniques such as MRI/ fMRI/rs-fMRI that are used in 
previous studies. Deep learning algorithms are capable 
of learning unseen patterns. Although, our data set was 
small, we obtained 82% precision for detecting good and 
bad ECTs. Thus, we believe DLs can help us to create a 
methodological approach to individualize ECT 
techniques for patients suffering from MDDs.   
 
At this point, we demonstrated our results to other mental 
healthcare professionals who offered their support to this 
project by giving us more EEG traces gathered from 
MDD patients’ scalps. Having more EEG traces will 
improve our DLs precision and prediction capability. 
 
One problem with our current EEG files is that they do 
not have the degree to which ECTs are applied to the 
MDD patients’ scalps.  Our future work will be to change 
our current DL’s architecture so by merely having the 
MDD patients pre-shock data it can assist MHPs to what 
degree they need to apply ECTs in order to get successful 
results. 
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