
An Order-Independent Algorithm for Learning Chain Graphs

Mohammad Ali Javidian?, Marco Valtorta†, and Pooyan Jamshidi†
?School of Electrical and Computer Engineering, Purdue University

†Department of Computer Science and Engineering, University of South Carolina
mjavidia@purdue.edu, {mgv, pjamshid}@cse.sc.edu

Abstract

LWF chain graphs combine directed acyclic graphs and
undirected graphs. We propose a PC-like algorithm, called
PC4LWF, that finds the structure of chain graphs under the
faithfulness assumption to resolve the problem of scalability
of the proposed algorithm by Studený (1997). We prove that
PC4LWF is order dependent, in the sense that the output can
depend on the order in which the variables are given. This or-
der dependence can be very pronounced in high-dimensional
settings. We propose two modifications of the PC4LWF al-
gorithm that remove part or all of this order dependence.
Simulation results with different sample sizes, network sizes,
and p-values demonstrate the competitive performance of the
PC4LWF algorithms in comparison with the LCD algorithm
proposed by Ma et al. (2008) in low-dimensional settings
and improved performance (with regard to error measures)
in high-dimensional settings.

Introduction
Currently systems containing both causal and non-causal re-
lationships are mostly modeled with directed acyclic graphs
(DAGs). Chain graphs (CGs) are a type of mixed graphs,
admitting both directed and undirected edges, which con-
tain no partially directed cycles. So, CGs may contain two
types of edges, the directed type that corresponds to the
causal relationship in DAGs and a second type of edge rep-
resenting a symmetric relationship (Sonntag et al. 2015).
LWF Chain graphs were introduced by Lauritzen, Wermuth
and Frydenberg (Frydenberg 1990), (Lauritzen and Wer-
muth 1989) as a generalization of graphical models based
on undirected graphs and DAGs. From the causality point of
view, in an LWF CG directed edges represent direct causal
effects, and undirected edges represent causal effects due to
interference (Bhattacharya, Malinsky, and Shpitser 2019).

One important aspect of Probabilistic Graphical Models
(PGMs), such as DAGs and CGs, is the possibility of learn-
ing the structure of models directly from sampled data. Six
constraint-based algorithms, that use a statistical analysis to
test the presence of a conditional independency, exist for
learning LWF CGs: (1) the inductive causation like (IC-
like) algorithm (Studený 1997), (2) the decomposition-based
(LCD) algorithm (Ma, Xie, and Geng 2008), (3) the answer
set programming (ASP) algorithm (Sonntag et al. 2015),

Copyright © 2021by the authors. All rights reserved.

(4) the inclusion optimal (CKES) algorithm (Peña, Sonntag,
and Nielsen 2014), (5) the local structure learning of chain
graphs with false discovery rate control (Wang, Liu, and Zhu
2019), and (6) the Markov blanket discovery (MbLWF) al-
gorithm (Javidian, Valtorta, and Jamshidi 2020a).

Similar to the inductive causation (IC) algorithm (Verma
and Pearl 1991), the IC-like algorithm (Studený 1997) can-
not be applied to large numbers of variables because for test-
ing whether there is a set separating X and Y in the skele-
ton recovery, the IC-like algorithm might search all 2n−2
subsets of all n random variables not including X and Y .
In order to overcome the scalability of the IC-like algo-
rithm, we propose a constraint-based method for learning
the structural of chain graphs based on the idea of the PC
algorithm (Spirtes, Glymour, and Scheines 2000), which is
used for learning the structure of Bayesian networks (BNs).
Our method modifies the IC-like algorithm to make it com-
putationally feasible in the phase of skeleton recovery and
to avoid the time consuming procedure of complex recov-
ery. We prove that our proposed PC-like algorithm, called
PC4LWF, is order dependent, in the sense that the output can
depend on the order in which the variables are given. The
order dependency can become very problematic for high-
dimensional data, leading to highly variable results for dif-
ferent variable orderings (Colombo and Maathuis 2014). We
propose several modifications of the PC4LWF algorithm that
remove part or all of this order dependence but do not change
the result when perfect conditional independence informa-
tion is used. When applied to data, the modified algorithms
are partly or fully order independent.

Our proposed algorithm, called STABLE-PC4LWF (Sta-
ble PC-like for LWF CGs), similarly to the LCD algorithm,
is able to exploit parallel computations for scaling up the
task of learning LWF CGs. This will enable effective LWF
CG discovery on large/high-dimensional datasets. In fact,
lower complexity, higher power of computational indepen-
dence tests, better learned structure quality, and the ability
of exploiting parallel computing make our proposed algo-
rithm more desirable and suitable for big data analysis when
LWF CGs are being used. Code for reproducing our re-
sults is available at https://github.com/majavid/
PC4LWF2020. Our main contributions are the following:
(1) We propose a PC-like algorithm, called PC4LWF, for
learning the structure of LWF CGs under the faithfulness

https://github.com/majavid/PC4LWF2020
https://github.com/majavid/PC4LWF2020

assumption that includes two main procedures: (i) a feasible
PC-like method for learning CG skeleton, (ii) a polynomial
time procedure for complex recovery.
(2) We show that our PC4LWF algorithm is order dependent.
Then, we propose two modifications of this algorithm that
remove part or all of this order dependence.
(3) We experimentally compare the performance of our pro-
posed PC-like algorithms with the LCD algorithm in the
evaluation section and show that the PC-like algorithms are
comparable to the LCD algorithm in low-dimensional set-
tings and superior in high-dimensional settings in terms of
error measures and runtime.
(4) We release supplementary material including data and an
R package that implements the proposed algorithms.

Definitions and Concepts
We refer the reader to (Javidian, Valtorta, and Jamshidi
2020b) for most (rather standard) definitions of graphical
notions. Below are some of the central concepts used in this
paper.

An LWF chain graph is a graph in which there are no par-
tially directed cycles. The chain components T of a chain
graph are the connected components of the undirected graph
obtained by removing all directed edges from the chain
graph. A minimal complex (or simply a complex or a U-
structure) in a chain graph is an induced subgraph of the
form a → v1 − · · · − vr ← b. The skeleton (underlying
graph) of an LWF CG G is obtained from G by changing all
directed edges of G into undirected edges. For a CG G we
define its moral graph Gm as the undirected graph with the
same vertex set but with α and β adjacent in Gm if and only
if either α→ β, or α− β, or β → α or if there are γ1, γ2 in
the same chain component such that α→ γ1 and β → γ2.

PC4LWF: a PC-Like Algorithm for Learning
LWF Chain Graphs

In this section, we discuss how the IC-like algorithm (Stu-
dený 1997) can be modified to obtain a computationally fea-
sible algorithm for LWF CGs recovery. A brief review of
the IC-like algorithm is presented first, then we present a
PC-like algorithm, called PC4LWF, which is a constraint-
based algorithm that learns a chain graph from a probability
distribution faithful to some CG.

The IC-like algorithm (Studený 1997) is a constraint-
based algorithm proposed for LWF CGs and is based on
three sequential phases. The first phase finds the adjacen-
cies (skeleton recovery), the second phase orients the edges
that must be oriented the same in every CG in the Markov
equivalence class (complex recovery), and the third phase
transforms this graph into the largest CG (LCG recovery).
The skeleton recovery of the IC-like algorithm works as fol-
lows: construct an undirected graph H such that vertices u
and v are connected with an undirected edge if and only if no
set Suv can be found such that u⊥⊥ v|Suv . This procedure is
very inefficient because this requires a number of indepen-
dence tests that increases exponentially with the number of
vertices. In other words, to determine whether there is a set
separating u and v, we might search all 2n−2 subsets of all

Algorithm 1: Edge-removal step of the PC algo-
rithm for Bayesian Networks

1 for i← 0 to |VH | − 2 do
2 while possible do
3 Select any ordered pair of nodes u and v in H such

that u ∈ adH(v), |adH(u) \ v| ≥ i
(adH(x) := {y ∈ V |x→ y, y → x, or x− y});

4 if there exists S ⊆ (adH(u) \ v) s.t. |S| = i and
u ⊥⊥p v|S (i.e., u is independent of v given S in
the probability distribution p) then

5 Set Suv = Svu = S;
6 Remove the edge u− v from H;
7 end
8 end
9 end

n random variables excluding u and v. So, the complexity
for investigating each possible edge in the skeleton is O(2n)
and hence the complexity for constructing the skeleton is
O(n22n), where n is the number of vertices in the LWF CG.
Since it is enough to find one S making u and v independent
to remove the undirected edge u v, one obvious short-
cut is to do the tests in some order, and skip unnecessary
tests. In the PC algorithm for BNs the revised edge-removal
step is done as shown in Algorithm 1.

Since the PC algorithm only looks at adjacencies of u
and v in the current stage of the algorithm, rather than
all possible subsets, the PC algorithm performs fewer in-
dependence tests compared to the IC algorithm. The com-
plexity of the PC algorithm for DAGs is difficult to eval-
uate exactly, but with the sparseness assumption the worst
case is bounded by O(nq) assuming an exact d-separation
test (Spirtes, Glymour, and Scheines 2000) and bounded
by O(nq) with high probability when a conditional inde-
pendence test is used, where n is the number of vertices
and q is the maximum number of the adjacent vertices of
the true underlying DAG (Kalisch and Bühlmann 2007).
Our main intuition is that replacing the skeleton recovery
phase in the IC-like algorithm with a PC-like approach will
speed up this phase and make it computationally scalable
when the true underlying LWF CG is sparse, which is of-
ten a reasonable assumption (Kalisch and Bühlmann 2007;
Colombo and Maathuis 2014) (see the skeleton recovery
phase of Algorithm 2).

The looping procedure of the IC-like algorithm for com-
plex recovery is computationally expensive. We use a poly-
nomial time approach similar to the proposed algorithm by
(Ma, Xie, and Geng 2008) to reduce the computational cost
of the complex recovery (see the complex recovery phase of
Algorithm 2). Finally, the IC-like algorithm uses three basic
rules, namely the transitivity rule, the necessity rule, and the
double-cycle rule, for changing the obtained pattern in the
previous phase into the corresponding largest CG (see (Stu-
dený 1997) for details). When we have perfect conditional
independence, both IC-like and LCD algorithms recover the
structure of the model correctly if the probability distribu-
tion of the data is faithful to some LWF CGs i.e., all con-
ditional independencies among variables can be represented
by an LWF CG. The entire process is formally described in

Algorithm 2: PC4LWF: a PC-like algorithm for
Learning LWF CGs

Input: a set V of nodes and a probability distribution p
faithful to an unknown LWF CG G.

Output: The pattern of G.
1 Let H denote the complete undirected graph over V ;

/* Skeleton Recovery */

2 Run Algorithm 1;
/* Complex Recovery (Ma, Xie, and Geng 2008) */

3 Initialize H∗ = H;
4 for each vertex pair {u, v} s.t. u and v are not adjacent in

H do
5 for each u− w in H∗ do
6 if u 6⊥⊥p v|(Suv ∪ {w}) then
7 Orient u− w as u→ w in H∗;
8 end
9 end

10 end
11 Take the pattern of H∗;

/* To get the pattern of H∗ in line 11, at each step, we
consider a pair of candidate complex arrows u1 → w1 and
u2 → w2 with u1 6= u2, then we check whether there is
an undirected path from w1 to w2 such that none of its
intermediate vertices is adjacent to either u1 or u2. If
there exists such a path, then u1 → w1 and u2 → w2 are
labeled (as complex arrows). We repeat this procedure until
all possible candidate pairs are examined. The pattern is
then obtained by removing directions of all unlabeled as
complex arrows in H∗ (Ma, Xie, and Geng 2008).
*/

Algorithm 2. We prove the correctness of Algorithm 2 in
(Javidian, Valtorta, and Jamshidi 2020b).

Computational Complexity Analysis of Algorithm 2.
The complexity of the algorithm for a graph G is bounded
by the largest degree in G. Let k be the maximal degree
of any vertex and let n be the number of vertices. Then
in the (rare) worst case the number of conditional inde-
pendence (CI) tests required by the algorithm is bounded
by 2

(
n
2

)∑k
i=0

(
n−2
i

)
≤ n2(n−2)k

(k−1)! (Javidian, Valtorta, and
Jamshidi 2020b).

The Stable PC-like Algorithms
In this section, we show that the PC4LWF algorithm pro-
posed in the previous section is order dependent, in the
sense that the output can depend on the order in which the
variables are given. In applications, we do not have per-
fect conditional independence information. Instead, we as-
sume that we have an i.i.d. sample of size n of variables
V = (X1, . . . , Xp). In PC4LWF, all conditional indepen-
dence queries are estimated by statistical CI tests at some
pre-specified significance level (p value) α. For example, if
the distribution of V is multivariate Gaussian, one can test
for zero partial correlation, see, e.g., (Kalisch and Bühlmann
2007). Hence, we use the gaussCItest() function from the R
package pcalg throughout this paper. Let order(V) denote an
ordering on the variables in V . We now consider the role of
order(V) in every step of the Algorithm 2.

In the skeleton recovery phase of the PC4LWF algorithm
(line 2), the order of variables affects the estimation of the
skeleton and the separating sets. In particular, as noted for
the special case of BNs in (Colombo and Maathuis 2014),
for each level of i, the order of variables determines the
order in which pairs of adjacent vertices and subsets S of

their adjacency sets are considered (see lines 4 and 5 in Al-
gorithm 1). The skeleton H is updated after each edge re-
moval. Hence, the adjacency sets typically change within
one level of i, and this affects which other conditional inde-
pendencies are checked, since the algorithm only conditions
on subsets of the adjacency sets. When we have perfect con-
ditional independence information, all orderings on the vari-
ables lead to the same output. However, in the sample ver-
sion (i.e., where CI tests have to be estimated from data), we
typically make mistakes in keeping or removing edges. The
main sources of erroneous CI tests are large condition sets
given a limited sample size and the curse-of-dimensionality
(Cheng, Bell, and Liu 1997). In such cases, the resulting
changes in the adjacency sets can lead to different skeletons,
as illustrated in Example 1.

Moreover, different variable orderings can lead to differ-
ent separating sets in the skeleton recovery phase. When we
have perfect conditional independence information, this is
not important, because any valid separating set leads to the
correct U-structure decision in the complex recovery phase.
In the sample version, however, different separating sets in
the skeleton recovery phase may yield different decisions
about U-structures in the complex recovery phase (line 3-11
of Algorithm 2). This is illustrated in Example 2.

Example 1 (Order dependent skeleton of the PC4LWF al-
gorithm) Suppose that the distribution of V = {a, b, c, d, e}
is faithful to the DAG in Figure 1(a). This DAG encodes the
following conditional independencies with minimal separat-
ing sets: a ⊥⊥ d|{b, c} and a ⊥⊥ e|{b, c}. Suppose that we
have an i.i.d. sample of (a, b, c, d, e), and that the following
conditional independencies with minimal separating sets are
judged to hold at some significance level α: a ⊥⊥ d|{b, c},
a ⊥⊥ e|{b, c, d}, and c ⊥⊥ e|{a, b, d}. Thus, the first two are
correct, while the third is false.

We now apply the skeleton recovery phase of the
PC4LWF algorithm with two different orderings:
order1(V) = (d, e, a, c, b) and order2(V) = (d, c, e, a, b).
The resulting skeletons are shown in Figures 1(b) and 1(c),
respectively.

Table 1: The trace table of Algorithm 2 for i = 3 and
order1(V) = (d, e, a, c, b).

Ordered Is Suv ⊆ Is u v
Pair (u, v) adH(u) Suv adH(u) \ {v}? removed?

(e, a) {a, b, c, d} {b, c, d} Yes Yes

(e, c) {b, c, d} {a, b, d} No No

(c, e) {a, b, d, e} {a, b, d} Yes Yes

We see that the skeletons are different, and that both are
incorrect as the edge c e is missing. The skeleton for
order2(V) contains an additional error, as there is an addi-
tional edge a e. We now go through Algorithm 2 to see
what happened. We start with a complete undirected graph
on V . When i = 0, variables are tested for marginal in-
dependence, and the algorithm correctly does not remove
any edge. Also, when i = 1, the algorithm correctly does
not remove any edge. When i = 2, there is a pair of ver-

https://cran.r-project.org/web/packages/pcalg

e

d

a

b c

(a)

e

d

a

b c

(b)

e

d

a

b c

(c)

Figure 1: (a) The DAG G, (b) the skeleton returned by Al-
gorithm 2 with order1(V), (c) the skeleton returned by Algo-
rithm 2 with order2(V).

ed

a

b c

(a)

ed

a

b c

(b)

ed

a

b c

(c)

Figure 2: (a) The DAG G, (b) the CG returned after the com-
plex recovery phase of Algorithm 2 with order1(V), (c) the
CG returned after the complex recovery phase of Algorithm
2 with order3(V).

Table 2: The trace table of Algorithm 2 for i = 3 and
order2(V) = (d, c, e, a, b).

Ordered Is Suv ⊆ Is u v
Pair (u, v) adH(u) Suv adH(u) \ {v}? removed?

(c, e) {a, b, d, e} {a, b, d} Yes Yes

(e, a) {a, b, d} {b, c, d} No No

(a, e) {b, c, e} {b, c, d} No No

tices that is thought to be conditionally independent given
a subset of size two, and the algorithm correctly removes
the edge between a and d. When i = 3, there are two pairs
of vertices that are thought to be conditionally independent
given a subset of size three. Table 1 shows the trace table
of Algorithm 2 for i = 3 and order1(V) = (d, e, a, c, b).
Table 2 shows the trace table of Algorithm 2 for i = 3 and
order2(V) = (d, c, e, a, b). This illustrates that order depen-
dent separating sets in the skeleton recovery phase of the
sample version of Algorithm 2 can lead to order dependent
skeletons.

Example 2 (Order dependent separating sets and U-
structures of the PC4LWF algorithm.) Suppose that the dis-
tribution of V = {a, b, c, d, e} is faithful to the DAG G in
Figure 2(a). DAG G encodes the following conditional in-
dependencies with minimal separating sets: a ⊥⊥ d|b, a ⊥⊥
e|{b, c}, a ⊥⊥ e|{c, d}, b ⊥⊥ c, b ⊥⊥ e|d, and c ⊥⊥ d. Suppose
that we have an i.i.d. sample of (a, b, c, d, e). Assume that
all true conditional independencies are judged to hold ex-
cept c ⊥⊥ d. Suppose that c ⊥⊥ d|b and c ⊥⊥ d|e are thought
to hold. Thus, the first is correct, while the second is false.
We now apply the complex recovery phase of Algorithm 2
with two different orderings: order1(V) = (d, c, b, a, e) and
order3(V) = (c, d, e, a, b). The resulting CGs are shown in
Figures 2(b) and 2(c), respectively. Note that while the sep-
arating set for vertices c and d with order1(V) is Sdc =
Scd = {b}, the separating set for them with order2(V) is
Scd = Sdc = {e}. This illustrates that order dependent
separating sets in the skeleton recovery phase of the sam-

Algorithm 3: STABLE-PC4LWF: an order indepen-
dent (stable) algorithm for learning LWF CGs.

Input: A set V of nodes and a probability distribution p
faithful to an unknown LWF CG G and an ordering
order(V) on the variables.

Output: The pattern of G
1 Let H denote the complete undirected graph over

V = {v1, . . . , vn};
/* Skeleton Recovery */

2 for i← 0 to |VH | − 2 do
3 for j ← 1 to |VH | do
4 Set aH(vj) = adH(vj);
5 end
6 while possible do
7 Select any ordered pair of nodes u and v in H such

that u ∈ aH(v) and |aH(u) \ v| ≥ i using
order(V);

8 if there exists S ⊆ (aH(u) \ v) s.t. |S| = i and
u ⊥⊥p v|S (i.e., u is independent of v given S in
the probability distribution p) then

9 Set Suv = Svu = S;
10 Remove the edge u v from H;
11 end
12 end
13 end

/* Complex Recovery */

14 Follow the same procedures in Algorithm 2 (lines: 11-19).

ple version of Algorithm 2 can lead to order dependent U-
structures.

We now propose several modifications of the PC4LWF al-
gorithm for learning LWF CGs (and hence also of the related
algorithms) that remove the order dependence in the various
stages of the algorithm, analogously to what Colombo and
Maathuis (Colombo and Maathuis 2014) did for the PC al-
gorithm in the case of DAGs.

Order Independent Skeleton Recovery
We first consider estimation of the skeleton in the adja-
cency search of the PC4LWF algorithm. The pseudocode
for our modification is given in Algorithm 3, where
the order-dependence is removed by the addition of the
highlighted lines 3-5. The resulting algorithm is called
STABLE-PC4LWF (stable PC-like for LWF CGs). Besides
resolving the order dependence in the estimation of the
skeleton, our algorithm has the advantage that it is easily
parallelizable at each level of i i.e., computations required
for i-level can be performed in parallel. As a result, the
runtime of the parallelized STABLE-PC4LWF algorithm is
much shorter than the PC4LWF algorithm for learning LWF
chain graphs. Furthermore, this approach enjoys the advan-
tage of knowing the number of CI tests of each level in ad-
vance. This allows the CI tests to be evenly distributed over
different cores, so that the parallelized algorithm can achieve
maximum possible speedup. The STABLE-PC4LWF is cor-
rect, i.e. it returns an LWF CG to which the given probability
distribution is faithful (Theorem 1), and it yields order inde-
pendent skeletons in the sample version (Theorem 2). Proofs
of these theorems are in (Javidian, Valtorta, and Jamshidi
2020b).

Table 3: Order dependence issues and corresponding modi-
fications of the PC4LWF algorithm that remove the problem.
“Yes” indicates that the corresponding aspect of the graph is
estimated order independently in the sample version.

Algorithm Skeleton Complex
Recovery Recovery

PC4LWF No No

STABLE-PC4LWF Yes No

Stable (Conservative/Majority rule) PC4LWF Yes Yes

Theorem 1 Let the distribution of V be faithful to an LWF
CG G, and assume that we are given perfect conditional in-
dependence information about all pairs of variables (u, v)
in V given subsets S ⊆ V \ {u, v}. Then the output of the
STABLE-PC4LWF algorithm is the pattern of G.
Theorem 2 The skeleton resulting from the sample version
of the STABLE-PC4LWF algorithm is order independent.
Example 3 (Order independent skeletons) We go back to
Example 1, and consider the sample version of Algorithm 3.
The algorithm now outputs the skeleton shown in Figure 1(b)
for both orderings order1(V) and order2(V). We again go
through the algorithm step by step. We start with a complete
undirected graph on V . No conditional independence found
when i = 0. Also, when i = 1, the algorithm correctly does
not remove any edge. When i = 2, the algorithm first com-
putes the new adjacency sets: aH(v) = V \ {v},∀v ∈ V .
There is a pair of variables that is thought to be condition-
ally independent given a subset of size two, namely (a, d).
Since the sets aH(v) are not updated after edge removals,
it does not matter in which order we consider the ordered
pair. Any ordering leads to the removal of edge between b
and c. When i = 3, the algorithm first computes the new
adjacency sets: aH(a) = aH(d) = {b, c, e} and aH(v) =
V \{v}, for v = b, c, e. There are two pairs of variables that
are thought to be conditionally independent given a subset of
size three, namely (a, e) and (c, e). Since the sets aH(v) are
not updated after edge removals, it does not matter in which
order we consider the ordered pair. Any ordering leads to
the removal of both edges a e and c e.
Order Independent Complex Recovery
We propose two methods i.e., Conservative PC-like al-
gorithm and Majority rule PC-like algorithm to resolve
the order dependence in the determination of the mini-
mal complexes in LWF CGs, by extending the proposed
approaches Conservative PC algorithm (MPC) (Ramsey,
Spirtes, and Zhang 2006) and Majority rule PC algorithm
(MPC) (Colombo and Maathuis 2014) for unshielded collid-
ers recovery in DAGs, respectively. Due to space limitation,
we refer readers to (Javidian, Valtorta, and Jamshidi 2020b)
for details.

Evaluation
To investigate the performance of the proposed algorithms,
we use the same approach as in (Ma, Xie, and Geng
2008) for evaluating the performance of the LCD algo-
rithm on Gaussian LWF CGs. We run our algorithms
PC4LWF and STABLE-PC4LWF as well as the LCD al-
gorithm on randomly generated LWF CGs and we com-
pare the results and report summary error measures. We

●

●

●

0.75

0.80

0.85

0.90

LC
D

O
P

C

S
P

C

P
re

ci
si

o
n

sample size
size = 100

size = 200

size = 300

alpha = 0.05

●

●

0.90

0.95

1.00

LC
D

O
P

C

S
P

C

alpha = 0.005

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.6

0.7

0.8

LC
D

O
P

C

S
P

C

R
ec

al
l

alpha = 0.05

●

●
●
● ●

●

0.5

0.6

0.7

0.8

LC
D

O
P

C

S
P

C

alpha = 0.005
sample size

size = 100

size = 200

size = 300

●

●

●

●
● ●

0.0005

0.0010

0.0015

0.0020

LC
D

O
P

C

S
P

C

F
P

R

alpha = 0.05

●

●

0.00000

0.00025

0.00050

0.00075

LC
D

O
P

C

S
P

C

alpha = 0.005
sample size

size = 100

size = 200

size = 300

●

●

●

●

●

●

●

●

●
●

●

0.994

0.995

0.996

0.997

LC
D

O
P

C

S
P

C

A
C

C

alpha = 0.05

●●●
●●

0.994

0.995

0.996

0.997

0.998

LC
D

O
P

C

S
P

C

alpha = 0.005
sample size

size = 100

size = 200

size = 300

●

●

●

●

●
●

●

●

●

200

250

300

350

LC
D

O
P

C

S
P

C

S
H

D

alpha = 0.05

●

●

●

150

200

250

300

350

LC
D

O
P

C

S
P

C

sample size
size = 100

size = 200

size = 300

alpha = 0.005

Figure 3: Performance of the LCD and PC-like algorithms
(PC4LWF (OPC) and STABLE-PC4LWF (SPC)) for ran-
domly generated Gaussian chain graph models: over 30 rep-
etitions with 300 variables, expected degree N = 3, and sig-
nificance levels α = 0.05, 0.005.

evaluate the performance of algorithms in terms of the
six measurements that are commonly used for constraint-
based learning algorithms (Colombo and Maathuis 2014;
Kalisch and Bühlmann 2007; Tsamardinos, Brown, and Al-
iferis 2006), and we report on the first five measurements
(see (Javidian, Valtorta, and Jamshidi 2020b) for a more de-
tailed report): (a) the true positive rate (TPR) (also known
as sensitivity, recall, and hit rate), (b) the false positive
rate (FPR) (also known as fall-out), (c) the true discovery
rate (TDR) (also known as precision or positive predictive
value), (d) accuracy (ACC) for the skeleton, (e) the struc-
tural Hamming distance (SHD) (this is the metric described
in (Tsamardinos, Brown, and Aliferis 2006) to compare the
structure of the learned and the original graphs), and (f) run-
time for the pattern recovery algorithms. In principle, large
values of TPR, TDR, and ACC, and small values of FPR and
SHD indicate good performance.

Figure 3 illustrate the performance of the algorithms in
a high-dimensional setting with 300 variables and sam-
ples of size 100, 200, and 300. Figure 3 shows that:
(a) the performance of the PC4LWF algorithms (espe-
cially STABLE-PC4LWF) in the high-dimensional setting
are better than the LCD algorithm (except for the FPR
with the p-value α = 0.05). This indicates that the
STABLE-PC4LWF algorithm is computationally feasible
and very likely statistically consistent in high-dimensional
and sparse setting. (b) STABLE-PC4LWF shows improved
performance in the high-dimensional setting against the
original PC4LWF algorithm, in particular for error measures
precision and FPR (and SHD with the p-value α = 0.05).
(c) In general, the p-value has a very large impact on the per-
formance of the algorithms. Our empirical results suggests
that in order to obtain a better precision, FPR, accuracy, and
SHD, one can choose a small value (say α = 0.005) for the
significance level of CI tests. (d) While the four error mea-
sures TPR, TDR, ACC, and SHD show a clear tendency with
increasing sample size, the behavior of FPR is not so clear.
The latter seems surprising at first sight but notice that dif-
ferences are very small with no meaningful indication about
the behavior of FPR based on the sample size. Other results
in sparse and moderately dense settings are in (Javidian, Val-
torta, and Jamshidi 2020b).

In summary, empirical simulations show that our pro-
posed algorithms achieve competitive results with the
LCD learning algorithm; in particular, in the Gaussian
case the STABLE-PC4LWF algorithm recovers a better-
quality structure than the LCD and original PC4LWF al-
gorithms, especially in high-dimensional sparse settings.
Besides resolving the order dependence problem, the
STABLE-PC4LWF algorithm has the advantage that it is
easily parallelizable and very likely consistent in high-
dimensional settings (conditions for consistency would need
to be investigated as future work) under the same conditions
as the original PC4LWF algorithm.

Acknowledgments
This work is partially supported by NASA (RASPBERRY-
SI Grant No. 80NSSC20K1720) and NSF (SmartSight
Award 2007202).

References
[Bhattacharya, Malinsky, and Shpitser 2019] Bhattacharya, R.;

Malinsky, D.; and Shpitser, I. 2019. Causal inference under
interference and network uncertainty. In Proceedings of UAI 2019.

[Cheng, Bell, and Liu 1997] Cheng, J.; Bell, D. A.; and Liu, W.
1997. Learning belief networks from data: An information theory
based approach. In Proceedings of the 6th CIKM, 325–331.

[Colombo and Maathuis 2014] Colombo, D., and Maathuis, M. H.
2014. Order-independent constraint-based causal structure learn-
ing. The Journal of Machine Learning Research 15(1):3741–3782.

[Frydenberg 1990] Frydenberg, M. 1990. The chain graph Markov
property. Scandinavian Journal of Statistics 17(4):333–353.

[Javidian, Valtorta, and Jamshidi 2020a] Javidian, M. A.; Valtorta,
M.; and Jamshidi, P. 2020a. Learning LWF chain graphs: A
Markov blanket discovery approach. volume 124 of Proceedings
of Machine Learning Research, 1069–1078. Virtual: PMLR.

[Javidian, Valtorta, and Jamshidi 2020b] Javidian, M. A.; Valtorta,
M.; and Jamshidi, P. 2020b. Learning LWF chain graphs: an order
independent algorithm. https://arxiv.org/abs/2005.
14037.

[Kalisch and Bühlmann 2007] Kalisch, M., and Bühlmann, P. 2007.
Estimating high-dimensional directed acyclic graphs with the PC-
algorithm. J. Mach. Learn. Res. 8:613–636.

[Lauritzen and Wermuth 1989] Lauritzen, S., and Wermuth, N.
1989. Graphical models for associations between variables, some
of which are qualitative and some quantitative. The Annals of
Statistics 17(1):31–57.

[Ma, Xie, and Geng 2008] Ma, Z.; Xie, X.; and Geng, Z. 2008.
Structural learning of chain graphs via decomposition. Journal of
Machine Learning Research 9:2847–2880.

[Peña, Sonntag, and Nielsen 2014] Peña, J. M.; Sonntag, D.; and
Nielsen, J. 2014. An inclusion optimal algorithm for chain graph
structure learning. In Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics 778–786.

[Ramsey, Spirtes, and Zhang 2006] Ramsey, J.; Spirtes, P.; and
Zhang, J. 2006. Adjacency-faithfulness and conservative causal
inference. In Proceedings of UAI Conference, 401–408.

[Sonntag et al. 2015] Sonntag, D.; Jãrvisalo, M.; Peña, J. M.; and
Hyttinen, A. 2015. Learning optimal chain graphs with answer set
programming. In Proceedings of the 31st UAI Conference, 822–
831.

[Spirtes, Glymour, and Scheines 2000] Spirtes, P.; Glymour, C.;
and Scheines, R. 2000. Causation, Prediction and Search, sec-
ond ed. MIT Press, Cambridge, MA.

[Studený 1997] Studený, M. 1997. A recovery algorithm for chain
graphs. International Journal of Approximate Reasoning 17:265–
293.

[Tsamardinos, Brown, and Aliferis 2006] Tsamardinos, I.; Brown,
L. E.; and Aliferis, C. F. 2006. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning
65(1):31–78.

[Verma and Pearl 1991] Verma, T., and Pearl, J. 1991. Equivalence
and synthesis of causal models. In Proceedings of the Sixth UAI
Conference, UAI ’90, 255–270.

[Wang, Liu, and Zhu 2019] Wang, J.; Liu, S.; and Zhu, M. 2019.
Local structure learning of chain graphs with the false discovery
rate control. Artif. Intell. Rev. 52(1):293–321.

https://arxiv.org/abs/2005.14037
https://arxiv.org/abs/2005.14037

	Introduction
	Definitions and Concepts
	PC4LWF: a PC-Like Algorithm for Learning LWF Chain Graphs
	The Stable PC-like Algorithms
	Order Independent Skeleton Recovery
	Order Independent Complex Recovery

	Evaluation
	Acknowledgments

