
From Tax Compliance in Natural Language to Executable Calculations:
Combining Lexical-grammar-based Parsing and Machine Learning

Esme Manandise, Conrad de Peuter, Saikat Mukherjee
Intuit, 2700 Coast Ave., Mountain View

CA, 94043-1140. United States
{Esme Manandise,Conrad DePeuter,Saikat Mukherjee}@intuit.com

Abstract
Regulatory agencies publish tax-compliance content
written in natural language intended for human con-
sumption. There has been very little work on automated
methods for interpreting this content and for generat-
ing executable calculations from it. In this paper, we
describe a combination of lexical grammar-based pars-
ing with encoder-decoder architectures for automati-
cally bootstrapping executable calculations from natu-
ral language. The combination is particularly suitable
for domains such as compliance where training data is
scarce and accuracy of interpretation is of high impor-
tance. We provide an overview of the implementation
for North American income-tax forms.

Introduction
Tax compliance is an universal task for individuals and busi-
nesses across countries. The complexity of the regulations
and the extent of services provided by regulatory agencies
vary across jurisdictions. When the responsibility of com-
pliance is on the individual or the business, the regulatory
agencies typically publish forms and instructions in natural
language. Individuals and businesses are expected to inter-
pret and file the filled-in forms with the agencies.

To simplify the process for tax filers, tax-preparation ap-
plications have been created which abstract filers away from
the language of forms. Historically, the compliance logic in
these applications have been built with the help of tax ex-
perts who, manually, interpret the compliance regulations in
the domain and write them down in code. This paper gives
an overview of an automated hybrid approach for convert-
ing natural-language tax calculations to executable calcula-
tions. The approach combines rule-based parsing and ma-
chine learning.

Our tax domain is the set of tax forms published annually
by the Internal Revenue Service (IRS) and the Canada Rev-
enue Agency (CRA). These are the primary tax regulatory
agencies in North America. The IRS, for example, publishes
more than 5,000 forms (excluding related worksheets, pub-
lications and instructions).

Tax forms describe calculations of varying complexity
(addition, subtraction, multiplication, division, percentage
conversion, rounding) (Table 1).

Copyright © 2021by the authors. All rights reserved.

Recent advances in language processing, especially with
pre-trained deep learning models, hold the promise of high
accuracy for generating executable calculations from raw
text. However, even though certain aspects of these mod-
els are pre-trained, we still need to provide training to
create the desired calculation output. It is difficult to ac-
quire training examples in low-data domains such as tax
compliance. Hence, in our in-house approach we leverage
both grammar-based parsing as well as supervised machine
learning to generate calculations automatically. The corpus-
driven grammar-based approach generates calculations in
the absence of any training data and also seeds the training
for the learning-based approach.

Related Work

There are few publications in English that detail the lan-
guage and discourse of the tax-and-regulations domain and
none that describes an end-to-end framework to translate
textual calculations into executable code.

Glossaries of tax terms are common and relatively small
in size. They are made available online and/or are published
by government agencies, private outfits and international or-
ganizations; some glossaries are integrated in tax and ac-
counting software.

In recent years, there has been an interest in studying tax-
domain texts from the linguistic and automation perspec-
tives. Wang et al. (2015) describe SEMPRE, semantic pars-
ing with execution. It has promising functionality to learn
to map natural language utterances to denotations via inter-
mediate logical forms. Manandise (2019) describes a pre-
processor to annotate automatically raw text in the tax do-
main with linguistic and domain features extracted using sta-
tistical measures based on corpus analysis. Blank and Osof-
sky (2017) discuss how language simplicity can cause a loss
of information and make content less accurate.

Tax NLP Calculation Workflow

The NLP calculation workflow comprises several sequential
steps. The source inputs are agency compliance documents,
typically in PDF format. The outputs of the workflow are
calculations which can be executed by rule engines.

IRS Forms Raw Input Segment
F8829 Line C times line D divided by 12 times $5.00 times line E
F1041 If line 25 is larger than the total of lines 23 and 26, enter amount overpaid
F8941WKS If the result is not a multiple of $1,000, round the result down to the next lowest multiple of $1,000

Table 1: Calculations as Raw Text

Content Structuring
Content structuring builds the foundation for the natural-
language to executable-calculations workflow. We automati-
cally extract information from compliance forms, which are
in PDF format, and represent the information in a structured,
machine-readable format. We use machine-learning models
which learn to identify and extract structured information
from PDF forms such as line numbers, line descriptions, ta-
bles, checkboxes, etc.

Content structuring from PDFs can extract 518 form sec-
tions with 95% accuracy, 5,573 form line descriptions with
92% accuracy and 7,930 form fields with 85% accuracy.

Term Extraction
We use a mixture of collocation scores for noun-phrase iden-
tification. On a corpus of 82.9k sentences from IRS income
tax forms and 187.6k sentences from associated instruction
documents, we extract 13k terms which are subsequently
used by our in-house LeanParsing.

Data Model Matching
Regulatory agencies provide schemata to describe fields in
compliance forms. For instance, the IRS provides an XML
data model of some 3000 elements, known as the Mod-
ern E-file Format (MeF), according to which tax returns are
structured. These data models are nomenclature of fields of
forms and not a structured representation of the forms them-
selves. In order to generate executable calculations from a
predicate-argument structure (PAS), we map the predicate
structures generated by our parser to the data model of the
domain.

Consider raw text in 1 below from a IRS line and its asso-
ciated PAS:

1. Add your taxable disability income to your spouse’s tax-
able disability income.

2. add(
taxable disability income(taxpayer),
taxable disability income(spouse)
))

Converting 2 above into an executable calcu-
lation necessitates mapping the predicate struc-
tures taxable disability income(taxpayer) and tax-
able disability income(spouse) to the corresponding
elements in the MeF data model. We use word embeddings
and supervised classification. The word embedding, trained
from the complete domain corpus, finds top candidates
entities for a given predicate structure. A random forest
supervised model, trained on pairs of predicate structures

to data model elements, predicts whether a given candi-
date text-PAS pair is a match. The most confident model
prediction is returned.

Parsing
LeanParsing (LP)
LeanParsing is an integrated application combining a goal-
oriented rule-based parser and translator to output minimal-
ist structured representations of tax-related calculations ex-
pressed in raw text written in English. LP represents the
operations (operators and operands) in a simplified logical
form (PAS for predicate-argument structure) as executable
content for consumption by downstream components (Fig-
ure 1).

The chart parser includes look-ahead and backtracking
features. It combines top-down and bottom-up mechanisms
for constituent bracketing and analysis. Parsing and trans-
lation are governed by lexicons, grammar-based procedures
with discourse mechanisms to allow for interpretation and
disambiguation of operators and operands in context beyond
sentence boundaries.

The motivations for adopting a rule/procedure-based
paradigm for parsing and translation are:

1. narrow deterministic goal
2. small domain corpus (raw-text collection)

LP is tasked with interpreting a specific language within
the tax-domain, namely, input that expresses calculations
in plain English across agency forms. Consequently, tax-
domain text that fulfills other communication functions,
once recognized, is ignored. LP simplifies the task by sepa-
rating text that points to calculations from non-calculations.
Tax forms are written for a wide audience—from general
public to tax experts. To help with reading comprehension,
tax calculations in texts are augmented with descriptive and
contextual content. This added content is repetitive, deictic,
and often redundant. For instance, in row 5 of Figure 1, the
parenthetical material (see the line 2 instructions) is not rel-
evant to the interpretation of the calculation which consists
of a term operand basic research payment (to be bound to
the actual amounts associated with the term) for the actual
organization denoted by the term qualified organization. On
the other hand, in row 1, the parenthetical material cannot
be discarded as it is relevant to the calculation. In row 6, the
expressions you reported and of your return are redundant
(as the tax-filer must be aware of her/his filling activity).

Lexical Resources A base lexicon for single tokens and a
terminology (term lexicon) for multi-word expressions cor-
responding to tax concepts and entities are populated auto-
matically by mining IRS and CRA income-tax forms, sched-
ules, worksheets, and publications. The lexical expressions

Figure 1: Raw Segment and PAS Pairs

result from co-occurrence/collocation-based surface statisti-
cal measures. In addition, linguistic filters exclude terms that
are ill-formed.

The base lexicon is a repository of granular multimodal
knowledge about single tokens in the domain. These tokens
correspond to the head of terms. For instance, the single-
token concept expense is the head of the terms daycare ex-
pense or research and experimental expense.

Lexical entries have been designed as dict pairs
key:values. The values themselves can be of type key:values.
The values fields are augmented with Wordnet and in-house-
Wordnet-like features to describe granular morphological,
semantic, syntactic, and domain-idiosyncratic properties of
the keys.

Parsing and Translation Overview LP combines both
shallow parsing and chart deep parsing (wherein each token
is accounted for). However, if calculations can be built be-
fore all the tokens in input are consumed, LP closes early.
Early closure is enabled by look-ahead and backtracking
mechanisms.

The main algorithmic tasks for LP are:

1. tokenization

2. morphological analysis (base forms)

3. single-token matching against base-lexicon with creation
of temporary dict for the input tokens; populate dict with
all available knowledge about tokens from base lexicon

4. term matching against terminology with creation of tem-
porary dict; populate dict with all available knowledge
about terms from terminology and ontology

5. on-the-fly creation of dict for unknown tokens with de-
fault predicted values

6. pre-processing tasks (text normalization, language-
variant unification, abbreviations, acronyms)

7. detection of candidate calculations (partial or complete)

8. noise tagging of expressions (single tokens, multi-tokens,
phrasal expressions) estimated to be unrelated to calcula-
tions

9. calculation classification (arithmetic, amount, etc)

10. first try shallow parsing (possible early closure) of labeled
calculations

11. if early closure fails, do deep parsing of detected calcula-
tions.

12. translation of intermediate parse charts into intermediate
PAS representations to final representations

Notes Rule-based LP does not include a separate declara-
tive grammar; instead, the grammar consists of a set of rules
and recursive procedures of type if X then Y, which are writ-
ten either as regular expressions and/or encoded in Python.
In its simplest form, LP includes rules that span the input
and test for possible patterns expressed as co-occurrences of
parts of speech and/or semantic, morphological and syntac-
tic features. This rule type is the most declarative in nature.
If shallow parsing does not produce a PAS, LP runs in its
full deep-parsing mode (chart parsing).

Evaluation of Raw Segment and PAS Pairs Out of 7,589
calculations, LP generates 5,584 accurate calculations in
PAS format, thus achieving 73% coverage with no-human
in the loop.

Error Checks
Architecture Our in-house ColBERT is a supervised ma-
chine learning framework to extract tax calculations from
agency content. The framework takes pairs of English-
language tax laws, and calculation graphs describing those
laws, and learns to output calculation graphs given PAS
or English-language sentences. ColBERT uses an encoder-
decoder architecture and is trained off of both human-written
examples and LP-created examples.

The encoder component converts text in a source lan-
guage to vectors, and the decoder converts these vectors into
tokens in a target language. Our ColBERT’s source language
is English, and its target language is the complete set of oper-
ations and operands possible within our internal tax compli-
ance language. For an encoder, we used BERT, a pre-trained

encoder released by Google. As our target language was in-
ternal, the decoder was trained from scratch.

In our training examples, we introduced a token to rep-
resent the result of the previous calculation: DATATEMP.
When processing outputted sequences, we split at known
operators, and put the full operations associated with these
operands into a stack. When the DATATEMP token ap-
peared, we popped the last operation off the stack. This cre-
ated edges in the calculation graph from one example to an-
other. When the output of the network is multiple boolean
statements, we assumed a logical conjunction of the Boolean
statements.

Training Data and Training To train ColBERT, we re-
quired pairs of English-language tax laws and verified calcu-
lations graphs representing those laws. From the LP pipeline
and some manually written examples from internal tax ana-
lysts, we had roughly 3000 examples.

Error Calculations A major use case of ColBERT was
in coding the calculations required for CRA error specifica-
tions. These specifications outline conditions which invali-
date a tax return. Although they are not included within in-
dividual forms, it is essential that tax software perform these
calculations. The calculations on these documents are more
complex than typical form-based calculations, with many
operations in individual sentences. As LP was built to parse
lines of forms, which typically have at most two operations
in an individual text input, it was not well suited to parse the
error specifications.

Within the error specifications, there were many exam-
ples of the same operation sequence with different operands.
Our synthetic data creation schema allowed for a workflow
where an analyst would write a ground truth example for
one of these sequences and the network would learn this se-
quence and output the correct calculation graph for all se-
quences of this structure.

Evaluation As the output of the network was an internal
compliance language, we were not able to evaluate this net-
work on external datasets. Internally, the network was suc-
cessful in saving a significant amount of human effort. By
generating calculations through the supervised framework
and then manually correcting errors, as opposed to author-
ing all content from scratch, analysts were able to speed
up their work by 16x on average. A key discovery to this
speedup was that the network output did not need to be per-
fect. The process of reviewing automatically produced cal-
culations and their associated metadata, and manually cor-
recting when necessary was significantly faster than author-
ing from scratch. When repeated identical errors were dis-
covered, the analyst would create a single correction and the
network would be retrained. In our final iteration, 40% of
error calculations (which comprise of many individual cal-
culations) were correctly generated in their automated form,
and 60% required some level of manual intervention.

Conclusion
In this paper, we provided an overview for combining lex-
ical grammar and deep learning architectures for boot-

strapping executable calculations from compliance forms
written in natural language. The system leverages output
from grammar-based techniques to train the neural network,
thereby achieving coverage over descriptions in form lines
as well as more error check calculation descriptions. Future
directions include exploring semantic parsing techniques as
well as interpreting set operations, which are fairly common
in tax forms. Also, we want to evaluate the feasibility of
the approaches on non-English jurisdictions (e.g. Quebec in
Canada) and non-tax compliance domains.

Acknowledgments
For contributions, insight and discussions, we thank Anu
Sreepathy, Mritunjay Kumar and Anu Singh.

References
An, Y.; and Wilson, N. 2016. Tax Knowledge Adventure:
Ontologies that Analyze Corporate Tax Transactions. In
Proceedings of the 17th International Digital Government
Research Conference on Digital Government Research,
6:303–311
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2018.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In arXiv:1810.04805 [cs.CL]
Blank, J.; and Osofsky, L. Simplexity: Plain Language and
the Tax Law. 2017. In Emory Law Journal, 66:189
Cohen, S. 2006. Words! Words! Words!: Teaching the Lan-
guage of Tax. In Journal of Legal Education, 55
Curtotti, M. and McCreath, E. 2011. A corpus of Australian
contract language: Description, profiling and analysis. in
Proceedings of the International Conference on Artificial In-
telligence and Law. 6:199-208
Distinto, I.; Guarino, N.; and Masolo, C. 2013. A well-
founded ontological framework for modeling personal in-
come tax. In Proceedings of the International Conference
on Artificial Intelligence and Law. 6:33-42
Manandise, E. 2019. Towards Unlocking the Narrative of the
United States Income Tax Forms. In Proceedings of the Sec-
ond Financial Narrative Processing Workshop (FNP 2019),
33-41. Association for Computational Linguistics
Manandise, E.; and de Peuter, C. 2020. Mitigating Silence
in Compliance Terminology during Parsing of Utterances.
In Proceedings of the 1st Joint Workshop on Financial Nar-
rative Processing and MultiLing Financial Summarisation.,
204-212. Association for Computational Linguistics
Wang, Y.; and Berant, J.; and Liang, P. 2015. Building a Se-
mantic Parser Overnight. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Beijing. China,
1332-1342. Association for Computational Linguistics

