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Abstract

Argumentation Theory provides tools for both modelling and
reasoning with controversial information and is a methodol-
ogy that is often used as a way to give explanations to re-
sults provided using machine learning techniques. In this con-
text, labelling-based semantics for Abstract Argumentation
Frameworks (AFs) allow for establishing the acceptability of
sets of arguments, dividing them into three partitions: accept-
able, rejected and undecidable (instead of classical Dung two
sets IN and OUT partitions). This kind of semantics have
been studied only for classical AFs, whilst the more pow-
erful weighted and preference-based framework has been not
studied yet. In this paper, we define a novel labelling seman-
tics for Weighted Argumentation Frameworks, extending and
generalising the crisp one.

Introduction
Argumentation and its applications are receiving increasing
interest in many fields of AI. For instance, argumentative
processes are used in (Lawrence et al. 2017) to interpret on-
line debates, while in (Walton and Koszowy 2017) an argu-
mentation system is devised to support expert opinion. Ar-
gumentation is also used to aid machine learning (see (Co-
carascu and Toni 2016) for a survey) for both improving per-
formances (e.g., classification accuracy) and providing ex-
planations to the results. Argumentation problems are mod-
elled through Abstract Argumentation Frameworks (AFs in
short) (Dung 1995), that consist of directed graphs in which
the nodes are arguments that contain abstract information
and the edges represent attack relations.

The acceptability of an argument of an AF can then be es-
tablished following different criteria, formalised through the
extension-based (Dung 1995) and the labelling-based (Cam-
inada 2006) semantics. Through the reasoning on the ac-
ceptability of the arguments according to a notion of de-
fence, one can divide the set of arguments into two sepa-
rated subsets, respectively containing acceptable and non-
acceptable arguments. However, for certain applications (es-
pecially those in which defeating an argument leads to the
reinstatement of another one) it is convenient to consider
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more degrees of acceptability in order to be able to fur-
ther differentiate among arguments. The labelling defined
in (Caminada 2006) refines the concept of acceptable argu-
ment and builds on the classical semantics for providing an
additional acceptance status through the assignment of la-
bels to the arguments.

To increase the expressiveness of AFs, attack relations be-
tween arguments can be endowed with a value (a weight)
which indicates the strength of the attacks themselves. In
this kind of frameworks, called weighted AFs, the accept-
ability criteria for the arguments also need to consider the
weight of incoming and outgoing attacks. Three main ap-
proaches have been proposed in the literature: in (Martı́nez,
Garcı́a, and Simari 2008) the attacks are considered individ-
ually and the acceptability status of an argument is deter-
mined through a one by one comparison on the strengths
of the relations; in (Coste-Marquis et al. 2012) each at-
tack towards an argument can be defended form a group of
arguments, with an overall strength obtained by aggregat-
ing the single strengths of the counter-attacks coming from
that group; the method used in (Bistarelli, Rossi, and San-
tini 2018), instead, aggregates the strengths of both the at-
tacks conducted towards and argument and the defences for
that argument. In all these works, extension-based semantics
have been used to identify sets of acceptable arguments. A
first study of labelling semantics for weighted AFs was con-
ducted in (Bistarelli and Taticchi 2020), solely relying on
the notion of weighted defence given in (Bistarelli, Rossi,
and Santini 2018). In this work, we study labelling seman-
tics for weighted AFs also considering the other two above-
mentioned collective defences, and we give the conditions
under which a labelling corresponds to a set of extensions.

Preliminaries
In this section we recall the formal definition of AF and the
related semantics introduced by Dung (Dung 1995), together
with the main definitions for Weighted AFs and the different
notions proposed for the acceptability of arguments.

Abstract Argumentation Frameworks
First of all, we recall the formal definition for an AF (Dung
1995).



Definition 1 (AFs). An Abstract Argumentation Framework
is a pair 〈A,R〉 where A is a set of arguments and R is a
binary relation on A.

Consider two arguments a, b belonging to an AF. We de-
note with (a, b) ∈ R (or simply a → b) an attack from a to
b; we can also say that b is defeated by a. We define the sets
of arguments that attack (and that are attacked by) another
argument as follows.
Definition 2 (Attacks). Let F = 〈A,R〉 be an AF, a ∈ A
and A ⊆ A. We define the sets a+ = {b ∈ A | a → b},
a− = {b ∈ A | b → a}, A+ = ∪{a+ | a ∈ A} and
A− = ∪{a− | a ∈ A}.

In order for b to be acceptable, we require that every ar-
gument that defeats b is defeated in turn by some other argu-
ment of the AF.
Definition 3 (Acceptable argument). Given an AF F =
〈A,R〉, an argument a ∈ A is acceptable with respect to
D ⊆ A if and only if ∀b ∈ A such that b ∈ a−, ∃c ∈ D∩b−,
and we say that a is defended by D.

Using the notion of defence as a criterion for distinguish-
ing acceptable arguments in the framework, one can further
refine the set of selected “good” arguments.
Definition 4 (Extension-based semantics). Let F = 〈A,R〉
be an AF. A set E ⊆ A is conflict-free in F if and only if
there are no a, b ∈ A such that (a, b) ∈ R. A conflict-free
subset E is then
• admissible, if each a ∈ E is defended by E;
• complete, if it is admissible and ∀a ∈ A defended by E,
a ∈ E;

• stable, if E ∪ E+ = A;
• preferred, if it is admissible and it is maximal (with re-

spect to set inclusion);
• grounded, if it is complete and it is minimal (with respect

to set inclusion).

Weighted Argumentation Frameworks
In classical AFs it is not possible to further diversify the
relations among arguments, and every attack has the same
“strength”, that is, the existence or not of an attack is the only
thing that matters in determining the semantics. To over-
come this limit, Dung’s AFs have been extended to Weighted
AFs (WAFs) by associating the attacks with a weight that
represents the support of the relation (Dunne et al. 2011).

To analyse a WAF in terms of sets of extensions, a defi-
nition of defence is required that encompasses the notion of
weighted attack relations. The acceptability of an argument
is then determined by comparing (the compositions of) the
attacks with (the composition of) the defences.

Different possible definitions can be considered: for in-
stance, in (Martı́nez, Garcı́a, and Simari 2008) the relative
strength of the attacks is used to determine if some de-
fence constraints are satisfied. On the other hand, the au-
thors of (Coste-Marquis et al. 2012) define a WAF as a triple
〈A,R, w〉, where w : A × A → N is a function assigning
a natural number (representing a weight) to each attack. Fi-
nally, in (Bistarelli, Rossi, and Santini 2018) the framework

is equipped with a c-semiring (Bistarelli and Gadducci 2006;
Bistarelli, Montanari, and Rossi 1997) that provides the op-
eration for composing the weights in order to estimate the
effectiveness of a defence. The use of a generic semiring per-
mits to instantiate the aggregation operator and capture any
important properties (Bistarelli, Rossi, and Santini 2018)
Definition 5 (c-semirings). A c-semiring is a tuple S =
〈S,⊕,⊗, ⊥,>〉 such that S is a set, >,⊥ ∈ S, and
⊕,⊗ : S × S → S are binary operators making the triples
〈S,⊕,⊥〉 and 〈S,⊗,>〉 commutative monoids (semi-groups
with identity), satisfying i) ∀s, t, u ∈ S. s⊗ (t⊕ u) = (s⊗
t)⊕ (s⊗ u) (distributivity), and ii) ∀s ∈ S. s⊗⊥ = ⊥ (an-
nihilator). Moreover, we have that ∀s, t ∈ S. s⊕ (s⊗ t) = s
(absorptiveness). The operator ⊕ also defines a preference
relation≤S over the set S, such that a ≤S b ⇐⇒ a⊕b = b,
for a, b ∈ S.

Some common instances of c-semirings are:
• Sboolean = 〈{false, true},∨,∧, false, true〉
• Sfuzzy = 〈[0, 1],max,min, 0, 1〉
• Sweighted = 〈R+ ∪ {+∞},min,+,+∞, 0〉

Different c-semirings can represent different notions of
defence for WAF, by using the operators ⊕ and ⊗ for ob-
taining an ordering among the values in S. For simplicity,
we refer to these values as weights. Note that the element
> of the c-semiring (e.g., 0 for the weighted and true for
the boolean) coincides with having no relation between two
arguments. We denote with WAFS a WAF endowed with a
c-semirings S and we call it a semiring-based WAF.
Definition 6 (WAFS). A semiring-based WAF is a quadru-
ple 〈A,R,W,S〉, where S is a c-semiring 〈S,⊕,⊗,⊥,>〉,
A is a set of arguments, R the attack binary-relation on A,
and W : A×A −→ S is a binary function. Given a, b ∈ A
and R(a, b), then W (a, b) = s means that a attacks b with a
weight s ∈ S. Moreover, we require that R(a, b) if and only
if W (a, b) <S >.

Given a WAFS, we can evaluate the overall weight of
all the attacks from a set of arguments towards another
set through the composition operator ⊗ of the c-semiring
S (Bistarelli, Rossi, and Santini 2016; Bistarelli and Santini
2017). In particular, we use

⊗
to indicate the ⊗ operator on

a set of values (indeed ⊗ is a binary operator that composes
two weights).
Definition 7 (Attacks). Let F = 〈A,R,W,S〉 be a WAF S.
A set of arguments B attacks a set of arguments D and the
weight of such attack is k ∈ S, if

W (B,D) =
⊗

b∈B,d∈D

W (b, d) = k.

The previous definition also allows composing the at-
tacks from a set of arguments to another single argument,
and from a single argument towards a set of arguments.
The frameworks in (Martı́nez, Garcı́a, and Simari 2008)
and (Coste-Marquis et al. 2012) can be then described as
instances of a WAFS. For instance, the attack strength used
in (Martı́nez, Garcı́a, and Simari 2008) corresponds to the
strongest weight among all the counter-attacks and can be



obtained through a fuzzy semiring. The approach in (Coste-
Marquis et al. 2012), instead, uses an aggregation function
(e.g., + or max) to obtain the overall strength of the attacks
coming from the defending arguments; also in this case, a
semiring can be selected according to the used aggregation
function.

The notion of weighted defence (or w-defence) can then
be expressed in terms of preferences over the weighted
attack relations. In particular, if we consider the defence
of (Martı́nez, Garcı́a, and Simari 2008), we obtain the de-
fence D1; alternatively, we can use the definition in (Coste-
Marquis et al. 2012) to obtain D2; the notion introduced
in (Bistarelli, Rossi, and Santini 2016), finally, generalises
the other two approaches and provides the defence D3.
Definition 8 (w-defence). Let F = 〈A,R,W,S〉 be a
WAF S. Then B ⊆ A w-defends b ∈ A if and only if ∀a ∈ A
such that R(a, b),

D1: ∃c ∈ B |W (a, b) ≥S W (c, a), or
D2: W (a, b) ≥S W (B, a), or
D3: W (a,B ∪ {b}) ≥S W (B, a).
By using one among D1, D2 and D3 for checking the ac-

ceptability of the arguments in the weighted framework, it
is possible to redefine all the extension-based semantics pre-
sented in Definition 4.
Definition 9 (Extension-based semantics for WAFS). Given
a WAFS F = 〈A,R,W,S〉, a subset of arguments B ⊆ A is
w-conflict-free if W (B,B) = >. A w-conflict-free subset B
is then:
• w-admissible, if B w-defends all its elements from the ar-

guments in A \ B;
• w-complete, if it is w-admissible and each argument b ∈
A such that B ∪ {b} is w-admissible belongs to B;

• w-stable, if it is w-admissible and B ∪ B+ = A;
• w-preferred, if it is a maximal (with respect to set inclu-

sion) w-admissible subset of A;
• w-grounded, if it is the maximal (with respect to set inclu-

sion) w-admissible extension included in the intersection
of w-complete extensions.

Labelling for Weighted AFs
The work in (Caminada 2006) describes how to assign la-
bels to the arguments of an AF in such a way that the set of
arguments is partitioned into three subsets, each represent-
ing a different degree of acceptance: IN, OUT and UNDEC.
Given a labelling L, it is possible to identify a correspon-
dence with the extension-based semantics (Baroni, Cami-
nada, and Giacomin 2011; 2018): for instance, the set of IN
arguments coincides with an extension of the acceptable se-
mantics. In every labelling of the various semantics, argu-
ments for which not every attacker is labelled OUT and no
attacker is labelled IN are labelled UNDEC. The admissible
labelling that we consider coincides with the interpretation
given in (Caminada 2014), where IN arguments can attack
both OUT and UNDEC arguments. Different definitions of la-
belling (as for instance the one given in (Jakobovits and Ver-
meir 1999)) force arguments attacked by an IN to be OUT.

However, nothing changes in terms of extensions, since the
set of IN arguments remains the same.

We extend the notion of labelling introduced in (Cami-
nada 2006) to weighted AFs. In particular, we consider a
WAFS and we provide a definition for the labelling. Further-
more, we give the conditions for determining whether a la-
belling corresponds to a certain extension.

Definition 10 (Labelling for WAFS). Let F = 〈A,R,W,S〉
be a WAFS. A labelling L of F is a total function L : A →
{IN, OUT, UNDEC}. For any A ⊆ A, we denote A|IN, A|OUT
and A|UNDEC the set of all the arguments labelled IN, OUT
and UNDEC by L, respectively.

D1,D2 and D3 demand specific considerations for com-
puting the (overall) weight of the attack relations that, as we
can see in Figure 1, lead to different outcomes in terms of
acceptable arguments.

(a) A w-admissible labelling
with respect to D1, D2 and D3.

(b) A w-admissible labelling
with respect to D2.

(c) A w-admissible labelling
with respect to D2 and D3.

(d) A w-admissible labelling
with respect to D2 and D3.

Figure 1: Example of labellings on a WAFS with a weighted
semiring where IN arguments are highlighted in green, UN-
DEC in yellow, and OUT in red.

The attacks in (Martı́nez, Garcı́a, and Simari 2008) are
ordered by their strength and it is sufficient to compare the
weight of two attacks to establish whether an argument is
defended (and so labelled IN) or not. Following (Coste-
Marquis et al. 2012), we need to know the strength resulting
from the composition

⊗
of all the attacks coming form the

defending arguments towards the attacker. In particular, an
argument b with label OUT is attacked by the arguments in
b−|IN with a total strength that is expressed by W (b−|IN, b).
According to the definition of collective weighted defence
given in (Bistarelli, Rossi, and Santini 2016), a set of argu-
ment is defended from an attacker b only if the

⊗
of all the

defending arguments is stronger than the
⊗

of the attacks
coming from b. This means that the strength of the attacks of
the defending arguments is distributed among the defended
arguments, so it is not guaranteed for two arguments that are
separately w-defended to sill be w-defended when consid-
ered together (this is what happens in the example in Fig-



ure 1c and 1d with arguments d and e). The intuition behind
this representation is that when an argument a is attacked
by an OUT b and cannot be labelled IN because another IN
argument is “consuming” the attacks of the defending argu-
ments towards b, then a is labelled UNDEC.

In the following, we give a characterisation of the
weighted semantics through the notion of labelling of
WAFS. We use the term “w-defends” to generally refer to
any of the conditions of Definition 8 (D1, D2 and D3).
The w-conflict-free labelling coincides with the classical
conflict-free labelling: since attacks are not allowed within a
conflict-free set of arguments, weights are not relevant.
Definition 11 (w-conflict-free labelling). Let L be a la-
belling of a WAFS F = 〈A,R,W,S〉 and a ∈ A. L is a
conflict-free labelling for F if and only if:
• L(a) = IN =⇒ a−|IN = ∅, and
• L(a) = OUT =⇒ a−|IN 6= ∅

Concerning w-admissible labellings, for an argument a to
be OUT there must exist at least an attack coming from an
IN argument, so we require W (a−|IN, a) <S > (where >
means that there is no attack between two arguments).
Definition 12 (w-admissible labelling). Let L be a labelling
of a WAFS F = 〈A,R,W,S〉 and a ∈ A. L is a w-
admissible labelling for F if and only if:
• L(a) = IN =⇒ a− = a−|OUT ∧A|IN w-defends a, and
• L(a) = OUT =⇒ W (a−|IN, a) <S >

The definition of the w-complete labelling derives from
the w-admissible one.
Definition 13 (w-complete labelling). Let L be a labelling
of a WAFS F = 〈A,R,W,S〉 and a ∈ A. L is a w-complete
labelling for F if and only if:
• L(a) = IN ⇐⇒ a− = a−|OUT ∧A|IN w-defends a, and
• L(a) = OUT ⇐⇒ W (a−|IN, a) <S >

A stable semantics partitions the arguments in two dis-
joint sets: one contains the arguments that are either not at-
tacked or defended by other acceptable arguments, while the
other contains the rest of the arguments (i.e., those that are
attacked and not defended).
Definition 14 (w-stable labelling). Let L be a labelling of a
WAFS F = 〈A,R,W,S〉. L is a w-stable labelling for F if
and only if

• L is a w-complete labelling, and
• A|UNDEC = ∅

We next present the w-preferred and w-grounded la-
bellings for WAFS.
Definition 15 (w-preferred labelling). Let L be a labelling
of a WAFS F = 〈A,R,W,S〉. L is a w-preferred labelling
for F if and only if
• L is a w-admissible labelling, and
• A|IN is maximal among all the w-admissible labellings
Definition 16 (w-grounded labelling). Let L be a labelling
of a WAFS F = 〈A,R,W,S〉 and a ∈ A. L is a w-grounded
labelling for F if and only if:
• L(a) = IN ⇐⇒ for all w-complete labellings L′,
L′(a) = IN, and

• L(a) = OUT ⇐⇒ W (a−|IN, a) <S >
Table 1 summarises the conditions specified in Definitions

from 11 to 16 for obtaining weighted labellings correspond-
ing to the Dung semantics.
Theorem 1. A labelling L of a WAFS F = 〈A,R,W,S〉
is a w-admissible (respectively w-complete, w-stable, w-
preferred, w-grounded) labelling if and only if A|IN is a w-
admissible (respectively w-complete, w-stable, w-preferred,
w-grounded) extension of F .

We sketch the proof regarding w-admissible semantics
(the others are obtained through similar reasoning). If L is
w-admissible, then the OUT arguments attacking A|IN are
also defeated by A|IN. Thus, A|IN is w-defended from the
attacks coming from A \ A|IN and so it is a w-admissible
extension. In the other case, when A|IN is a w-admissible
extension, we know that it w-defends itself from the attacks
coming from OUT arguments in A \ A|IN and thus L is a
w-admissible labelling.

Weighted semantics are a generalization of the classical
case, and all the labellings for WAFS corresponds to the re-
spective classical semantics when the framework is instan-
tiated with a boolean semiring. When the WAFS is instanti-
ated with a boolean semiring, all the attacks from an argu-
ment to another are associated with the value false and also
W (a−|IN, a) always corresponds to false.
Theorem 2. The labelling of a WAFS instantiated with a
boolean semiring corresponds to the classical labelling.

conditions on IN arguments conditions on OUT arguments other conditions
w-cf L(a) = IN =⇒ a−|IN = ∅ L(a) = OUT =⇒ a−|IN 6= ∅

w-adm L(a) = IN =⇒ a− = a−|OUT L(a) = OUT ⇐⇒ W (a−|IN, a) <S >∧ A|IN w-defends a

w-com L(a) = IN ⇐⇒ a− = a−|OUT L(a) = OUT ⇐⇒ W (a−|IN, a) <S >∧ A|IN w-defends a

w-stb L(a) = IN ⇐⇒ a− = a−|OUT L(a) = OUT ⇐⇒ W (a−|IN, a) <S > A|UNDEC = ∅∧∀b ∈ a−. W (b−|IN, b) ≤S W (b, b+|IN)

w-pre L(a) = IN =⇒ a− = a−|OUT L(a) = OUT =⇒ W (a−|IN, a) <S > A|IN max w-adm∧∀b ∈ a−. W (b−|IN, b) ≤S W (b, b+|IN)
w-gde L(a) = IN ⇐⇒ ∀L′ w-com, L′(a) = IN L(a) = OUT ⇐⇒ W (a−|IN, a) <S >

Table 1: Summarisation of the introduced labellings for WAFS.



It follows that if L is a w-admissible (respectively w-
complete, w-stable, w-preferred, w-grounded) labelling of
a WAFS F , then L is an admissible (respectively complete,
stable, preferred, grounded) labelling of F .

Implementation
To complete our study and facilitate the use of weighted la-
belling semantics for argumentation-based application, we
provide a tool able to represent WAFS and visualize the
computed labellings for various semantics. For this purpose,
we extend ConArg1 (Bistarelli and Santini 2011), a suite of
tools for argumentation, with a series of functionalities for
handling weighted argumentation problems. At the time of
writing, the tool allows to use of the defences D1 and D3.
The web interface, shown in Figure 2, is implemented in
JavaScript and relies on a server-side solver written in C. In
the following, we describe an example of use of the tool for
weighted argumentation.

First of all, we use panel 4 of Figure 2 to select a semir-
ing: this determines both the representation of the AF and
the kind of solution provided by the solver. If “weighted”
is chosen, it is possible to specify a WAFS by either using
the input area (panel 5) or directly clicking on the canvas to
draw arguments and attacks. The next step is to select the
semantics (panel 1) for which we want obtain a labelling.
Since we selected the weighted semiring, we will obtain a
weighted labelling. The solver computes the sets of IN ar-
guments, that are then displayed in panel 6. The labellings
are directly visible on the WAFS through the usual colour
scheme: IN arguments are green, OUT red and UNDEC yel-
low. In case the solver returns more than one solution for the
selected semantics (as happens in Figure 2), we can choose
which labelling to visualise by using panel 3.

Related Work
The problem of extending classical AFs with values express-
ing the strength of arguments and attacks is widely studied,

1ConArg website: http://dmi.unipg.it/conarg.

and many different approaches have been presented in the
literature. In (Amgoud and Cayrol 1998), the authors take
into account preference orderings for comparing arguments,
while in (Bench-Capon 2003) the success of an attack con-
ducted by an argument toward another one depends on an
ordering among the “values” promoted by each argument.
A study on bipolar WAFs is conducted in (Pazienza, Ferilli,
and Esposito 2017), where the authors present an extension
for weighted frameworks that takes into account attack and
support relations. Another formalism based on a notion of
strength is given in (Baroni et al. 2015), were arguments are
evaluated through a score system. The main difference with
our work lies in the fact that we take into account the ba-
sic definition of WAFs (Dunne et al. 2011), without further
refinements on the framework level. Moreover, our study is
focused on the interpretation of the labelling in the weighted
case.

Conclusion and Future Work
We introduce a labelling for WAFs, together with a set of
labelling conditions corresponding to extensions for some
semantics. We also show that our labelling function gen-
eralises the classical approach for the non-weighted case.
Finally, we present an online an implementation of the la-
belling for WAFs. We have considered three different defi-
nitions of collective defence provided in the literature.

As future work, we plan to extend this work in different
directions. The definitions of the labelling-based semantics
for WAFs do not include conditions for the UNDEC since
they are obtained from IN and OUT arguments. In this sense,
we would like to investigate the possible advantages of giv-
ing explicit conditions for labelling the UNDEC arguments,
similarly to what is done in (Modgil and Caminada 2009)
for classical AFs. An interesting study could then be car-
ried out using a four-states labelling semantics (Baroni, Gi-
acomin, and Liao 2015; Arieli 2016) which further differ-
entiate UNDEC arguments. In our context, the difference be-
tween labels could be made more continuous by consider-
ing the weight on the attack relations. continuous by con-
sidering the weight on the attack relations. Accordingly,

Figure 2: ConArg web interface displaying a weighted labelling for a WAFS. The highlighted areas corresponds to: 1) semantics
selection, 2) representation of weights by stroke/label, 3) solution selection, 4) semiring selection, 5) input area, 6) output area.



we want to provide real world examples where the use of
three (or four) labels is more convenient than the classi-
cal accepted/rejected partitioning. We also plan to give a
definition of w-strongly admissible extension (generalising
the one provided in (Baroni and Giacomin 2007) for the
crisp case) and introduce the respective labelling. Finally,
given the close correspondence between argumentation se-
mantics and the stable model semantics for logic program-
ming we would like to investigate possible connections be-
tween weighted argumentation and multi-valued logic pro-
gramming (Mobasher, Pigozzi, and Slutzki 1997).
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