Improving Similarity-Based Retrieval Efficiency by Using Graphic
Processing Units in Case-Based Reasoning

Lukas Malburg!?, Maximilian Hoffmann'2, Simon Trumm?, Ralph Bergmann?'’

2

! Business Information Systems II, University of Trier, 54296 Trier, Germany
{malburgl,hoffmannms4sitrum,bergmann } @Quni-trier.de,
http://www.wi2.uni-trier.de
2 German Research Center for Artificial Intelligence (DFKI)

Branch University of Trier, Behringstrafle 21, 54296 Trier, Germany
{lukas.malburg,maximilian.hoffmann,ralph.bergmann } @dfki.de

Abstract

The accelerated growth of available data causes
case bases of increasing sizes and thus lowers ef-
ficiency during the case retrieval phase in Case-
Based Reasoning (CBR) systems. Even though,
many complex and data-intensive tasks are solved
by using Graphic Processing Units (GPUs), its ap-
plication in CBR research has yet to advance past
the early stage phase. In this paper, we present
an approach to use CUDA-compatible GPUs for
similarity assessment of structural, feature vec-
tor based cases. Our approach supports several
syntactic and semantic similarity measures and is
implemented in the open-source case-based rea-
soning framework ProCAKE. When comparing to
current retrieval techniques that calculate similar-
ities on the CPU, our GPU-based approach out-
performs them by a factor of up to 37. In ad-
dition, our evaluation indicates that the perfor-
mance gains increase with higher case complexity.

1 Introduction

Today, the rapidly growing amounts of data result in
case bases of increasing sizes in Case-Based Reasoning
(CBR) systems, which in turn multiplies the compu-
tation efforts during case retrieval. However, a critical
factor for the efficiency of a CBR system is its per-
formance during the aforementioned phase of case re-
trieval (Dalal, Athavale, and Jindal 2011) and high re-
trieval times cause lower user acceptance rates. Addi-
tionally, performance and accuracy of case retrieval also
influences the speed and quality of learning adaptation
knowledge from case bases (Hanney and Keane 1997).

Our previous work investigates the acceleration of re-
trieval by applying MAC/FAC techniques (Hoffmann et
al. 2020; Klein, Malburg, and Bergmann 2019) and by
improving heuristics used during case retrieval (Zeyen
and Bergmann 2020). Due to the development of more
powerful Graphics Processing Units (GPUs) in recent
years, its utilization in both academia and industry is
common. With GPUs playing an important role in var-
ious fields of computer science such as deep learning

Copyright (© 2021, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

(Shi et al. 2016) or high performance computing (Kin-
dratenko and Trancoso 2011), they are especially use-
ful for highly parallelizable and possibly complex tasks.
The procedure of similarity assessment during case re-
trieval can naturally be parallelized since the similar-
ity computation between a query and a case from the
case base is independent of other cases in the same case
base. There exists some related work that uses GPUs
for distributed CBR in the context of workflow moni-
toring (e.g., Agorgianitis et al. 2017) or tasks similar
to case retrieval like k-nearest neighbors (e.g., Liang
et al. 2009; Li and Amenta 2015). In this paper, we
present and evaluate a novel GPU-based retrieval ap-
proach for the retrieval phase in CBR. The approach
supports structural, feature vector based case represen-
tations and is implemented in the open-source CBR sys-
tem ProCAKE (Bergmann et al. 2019).

In the following, previous work on using GPUs in
CBR and other related fields is presented. Furthermore,
the structural case representation in ProCAKE is de-
scribed in detail. In Sect. 3, we present our approach for
using GPUs to accelerate case retrieval in CBR. Here,
we introduce how cases are pre-processed and how the
data exchange is performed between CPU and GPU. An
experimental evaluation of our approach is presented in
Sect. 4. Finally, Sect. 5 concludes the results and dis-
cusses future work.

2 Foundations and Related Work

Current research on the acceleration of similarity-based
retrieval in Case-Based Reasoning (CBR) mainly ad-
dresses slow retrieval times by using MAC/FAC (For-
bus, Gentner, and Law 1995) techniques (e.g., Bach
et al. 2016; Hoffmann et al. 2020; Klein, Malburg, and
Bergmann 2019) or other index-based approaches (see
Bergmann 2002). Since we tackle this problem by shift-
ing the similarity calculation from CPU to GPU, we
first present two important aspects of the similarity cal-
culation, i. e., the structural case representation and the
corresponding similarity measures. Afterwards, related
work in the area of GPU-based acceleration of complex
problems such as case retrieval in CBR is presented.

Case Representation and Similarity
Assessment

In our approach, we restrict ourselves to structural case
representations. Figure 1 shows an exemplary case in
attribute-value fashion that represents a car. Each car

Car

Price: Numeric (Linear) Engine

Manufacturer: String (Taxonomy) Fuel: String (Equals)

Engine: Aggregate (Average) [~ °7" » Cylinders: Numeric (Linear)

Figure 1: Exemplary Attribute-Value Representation of
a Car.

has several attributes, e. g., the price, the manufacturer,
or the type of fuel. These attributes are represented by
Atomic data types, i.e., strings or numeric values, or
by combining several atomic data types to composite
data types such as Aggregate types. An Aggregate data
type such as the attribute Engine consists in turn of one
or more Atomic data types, i.e., Fuel and Cylinders.
The similarity assessment of structural cases follows
the local-global principle proposed by Richter (Richter
1998) where the local similarities of individual at-
tributes on the lowest level of the case representation
are first determined, i.e., Fuel and Cylinders, and ag-
gregated afterwards. Here, the local similarities of the
parent Atomic and Composite types are calculated, i.e.,
Price, Manufacturer, and the similarity for the Com-
posite type Engine, which aggregates the similarities of
Fuel and Cylinders. All similarity calculations are in-
dependent from each other and could also be performed
partially simultaneously. Figure 2 illustrates an exem-
plary similarity calculation between a query @ and a
case C. On the lowest level, the pairwise similarities

Query | sim(Q,€) 083 . > Case
Price: 17990 -oooe $iMprice(Q, C) = L-------- »| Price: 17990
Manufacturer: Audi 'Simﬁlanufactm'ﬂ‘(Q’ C) =0.4---» Manufacturer: BMW
Engine: -+ 8iMpngine(Q,C) = 0.5 ----- » Engine:
Fuel: Petrol 8impy(Q,C) =0 ----- » Fuel: Diesel
Cylinders: 4 -+ 8iMeylinders (@, C) = 1 ----- > Cylinders: 4

Figure 2: Similarity Assessment based on Local-Global
Principle for a Query-Case Pair.

between the attributes Cylinders and Fuel are deter-
mined and aggregated with an equal weighting to the
similarity for the attribute Engine, i.e., 0.5. Further,
the similarity value of 0.5 is combined with the pair-
wise similarity values of the attributes Manufacturer
and Price to form the global equally weighted average
similarity value of 0.63 between query and case. The
similarity measures used in this example are linear nu-
meric measures and a string equality measure. For the

attribute Manufacturer, a taxonomic similarity mea-
sure that is based on a semantic taxonomy (Bergmann
2002) of manually annotated similarities is applied.

Related Work

The application of GPUs besides its originally intended
purpose of rendering images gains attraction in both
academia and industry. GPUs are utilized in several re-
search fields from an academic perspective, especially
for highly parallelizable workloads. Liang et al. (2009)
present an approach that uses the GPUs for a parallel
k-Nearest Neighbor (KNN) search called CUDA-based
parallel KNN (CUKNN). They show in their evalua-
tion that a speedup of 46.71 times is possible. How-
ever, they only use synthetic data and no real-world
datasets from a practice-oriented point of view. Li and
Amenta (2015) also introduce an approach that utilizes
a truncated merge sort algorithm from a GPU library
to find the k-nearest neighbors. The approaches are not
specifically tailored for CBR applications and mainly
focus on numerical data and not complex structural,
feature vector based case representations. In context of
CBR, GPU-based acceleration is widely used for com-
bining CBR and Deep Learning (DL) techniques, e.g.,
for explainable AI research (e.g., Keane and Kenny
2019; Nugent and Cunningham 2005) or for learning
similarity measures (e.g., Amin et al. 2019). Addition-
ally, our own previous work (Hoffmann et al. 2020;
Klein, Malburg, and Bergmann 2019) draws the compu-
tational power of GPUs to learn workflow embeddings
with the application of deep learning techniques during
the similarity-based retrieval in CBR. However, since
GPU-based acceleration is part of the DL framework in
these applications and it is not specifically customized
for the CBR components, we clearly differentiate the
approach shown here from the ones mentioned before.
To the best of our knowledge, there is only one pub-
lication by Agorgianitis et al. (2017) that exploits the
computational power of GPUs in the context of CBR.
The goal is to monitor business processes by implement-
ing a distributed CBR approach. The GPU performs
the similarity calculation during the retrieval phase to
assess the similarity between workflows. However, the
approach focuses on decentralization and the use of a
distributed infrastructure for workflow monitoring in-
stead of the retrieval phase to determine the similarity
of cases exclusively. In our approach, we use KNN simi-
lar to the presented related work for the retrieval phase
in a CBR system. Finally, we consider several similarity
measures and notes for their application on GPUs.

3 Similarity-Based Retrieval by Using
Graphic Processing Units

In this section, we present our approach for perform-
ing a similarity-based retrieval on a GPU to accelerate
retrieval in CBR. We describe our GPU retrieval frame-
work, the specific data preparation for this retrieval
context, and different types of similarity measures.

Framework Overview

Our approach uses CUDA (Nickolls et al. 2008; Nvidia
2020) as the programming interface for the GPU. Figure
3 illustrates an overview of the system components for
our GPU approach. The relevant data for performing

Data Preprocessing & | ____ >‘ CUDA Kernel ‘*ﬂ Retrieval ‘
Device C 0

A
v v v v
CBR Framevork LC/(Q ez | w
‘ i/‘[‘ff'l_a"f’_' ('a“Bf'“&‘ Vocabulary Thread 1 Thread 2 Thread N
casures Query (Query, Case 1)| |(Query, Case 2)] " |(Query, Case N)|

Figure 3: Framework for GPU-Based Retrieval in Case-
Based Reasoning.

a retrieval, i.e., the case base and query, the vocabu-
lary, and the used similarity measures, are modeled and
stored in a CBR framework. The corresponding kernels
that are executed during a retrieval are defined on the
GPU. Both components, i.e., the CBR framework and
CUDA, are connected via a data preparation compo-
nent that handles encoding and transfer of information
from CPU to GPU and back again. In our approach, a
retrieval is run as follows: In an offline phase, the case
base and the information regarding the similarity mea-
sures and the vocabulary are encoded, transferred to
the GPU, and stored in the on-chip memory. We as-
sume a static case base in our explanations but it is
also possible to do dynamic changes to the case base
in GPU memory, e.g., to add single cases. It may be
necessary to further process the transferred data, e. g.,
to build a taxonomic data structure for some similarity
measures (see Sect. 2). The case base and all additional
information are stored on the GPU for the complete life-
time of the application. In this context, we assume that
the data completely fits into the graphics RAM, which
is usually no problem even for large case bases. The
online phase starts when a query is submitted. First,
the query case is created, encoded, and transferred to
the GPU. After that, the similarity computation be-
tween the query case and all cases from the case base is
started. Our approach utilizes the parallelization possi-
bilities of GPUs by computing the similarity for each in-
dividual query-case pair (see Fig. 2) on a separate GPU
thread (similar to Liang et al. 2009). Consequently, each
thread generates a similarity for a respective case by
using the given data about the similarity measures, in-
cluding the aggregation of local similarity values to a
single global similarity. The case similarity values are
afterwards transferred back to the CPU. As a last step,
the cases are sorted, the retrieval result is finalized, and
the k-most similar cases are returned to the user by the
CBR framework.

Data Preparation for GPU Retrieval

The process of GPU-based retrieval, as introduced be-
fore, requires the case base and query data to be pre-
pared for this specific scenario. That is mainly due to

the step of data transfer from CPU’s RAM to GPU’s
graphics RAM. Therefore, it is necessary to encode the
abstract data to a simple format of n-dimensional arrays
(Nvidia 2020) that can be transferred to the GPU via
built-in CUDA methods. Those arrays can be quickly
accessed and are efficient in terms of required storage
space. An example of two encoded cases is shown in Fig.
4. Case data is split-up in two arrays where the first ar-

Numeric [17990] 4 [17990 [4 |

String |"Audi"| "Petrol" |"BMW"|"Diesel" |

Figure 4: Exemplary Encoded Case Data for Similarity
Computation on the GPU.

ray stores numeric data as 32-bit floating point values
and the second array stores string data. Although the
figure depicts an array of strings, this array contains
chunks of char data that are concatenated to one large
array. This concatenated array can be divided again af-
ter transfer to the GPU by storing another array. The
additional array holds numbers that indicate the char-
acter length of each individual string in the concate-
nated array. Only the Atomic values of case attributes
are part of the numeric and the string array. Values of
individual attributes of the case representation always
have the same order in these arrays across all encoded
cases. Thus, it is ensured that each case is encoded in
the same way. The order is given by the structural meta
data of the cases, defined in the vocabulary that is also
transferred to the GPU.

The encoding example shown in Fig. 4 reuses the
query-case pair from Fig. 2. Consequently, the encoded
data refers to these two cases with the numeric values
being a price of 17990 and 4 cylinders for the query
and a price of 17990 and also 4 cylinders for the case.
The string values express an Audi with petrol fuel for
the query and a BMW with diesel as fuel for the ex-
emplary case. These array entries are placed according
to the vocabulary: it describes that the car’s price is
always located in the first numeric array position be-
longing to one case and the number of cylinders in the
second position. Similarly, for the array of strings, the
manufacturer is located in the first position and the
type of fuel in the second position. A clear definition of
the position of attribute values in these arrays is essen-
tial since similarity measures solely rely on this infor-
mation to compute similarities. It is important to note
that missing attribute values are represented by using a
special Atomic type. Therefore, the attribute sequence
is always guaranteed even if values in cases are missing.

GPU-Accelerated Similarity Measures

In order to compute similarities between a query and
the corresponding cases, the GPU has to execute kernels
that compute these similarities. As opposed to CPU-
based applications where the case data is represented
in a structural, object-oriented fashion, the data on the

GPU utilizes an array-based, feature vector based rep-
resentation of case data. This means that we imple-
mented all similarity measures necessary to work with
this data structure. The global aggregated similarity of
two cases is computed in a bottom-up approach (see
Sect. 2 for an example). Starting with the local simi-
larities of all atomic values, i. e., the similarities of indi-
vidual attributes, the similarities are iteratively aggre-
gated to eventually result in one global similarity for the
query-case pair. When applying this approach to the
exemplary similarity assessment from Fig. 2 with the
encoded data from Fig. 4, the similarity measures work
as follows: First, the local similarities for the Atomic
attributes Fuel, Cylinders, Price, and Manufacturer
are computed (0, 1, 1, and 0.4). Afterwards, the lo-
cal similarity of the aggregate attribute Engine is com-
puted by taking the average of the similarities of Fuel
and Cylinders (0.5). Finally, the global similarity of
0.63 is computed by averaging the equally weighted sim-
ilarities of Manufacturer, Price, and Engine. The ap-
proach also supports other arbitrary attribute weight-
ings. The previous example shows another important
aspect in applying these similarity measures: When op-
erating on the encoded case data, most of the similarity
measures also require additional data to work properly,
e.g., lower and upper bounds for a numeric measure or
complex taxonomic hierarchies. For each of those cases,
the individually encoded data might have to be pro-
cessed on the GPU prior to executing the similarity
measures.

4 Experimental Evaluation

To evaluate our approach, we measure the retrieval time
of different retriever implementations with a specific fo-
cus on the comparison of retrievers that only use CPU
computing and our retrieval approach that uses GPU
computing. The evaluated retrievers comprise a serial
CPU retriever that operates on a single thread (single
thread CPU retriever; SCR), a parallel CPU retriever
that uses all available threads of the CPU (parallel CPU
retriever; PCR), and a GPU retriever that computes all
similarities on GPU hardware (GPU retriever; GR). We
investigate the following hypotheses in our experiment:

H1 Using GR outperforms all other retrievers that
completely or partially operate on the CPU
w.r.t. retrieval times.

H2 With increasing complexity of the case represen-
tation, the retrieval time of GR increases less
than the retrieval time of the CPU approaches.

Experimental Setup

For our experiments, we implemented the previously
presented approach in the ProCAKE CBR frame-
work! (Bergmann et al. 2019), which supports struc-
tural and process-oriented CBR, applications with cases

!See http://procake.uni-trier.de

represented as attribute-value pairs and cases repre-
sented as semantic graphs (Bergmann and Gil 2014),
respectively. Since ProCAKE is implemented in Java
we use the bindings of JCUDA (Yan, Grossman, and
Sarkar 2009), but, however, the CUDA core can be flex-
ibly integrated into other CBR frameworks as well. As
already mentioned, we restrict ourselves to structural,
feature vector based cases of cars and model two differ-
ent case representations to define them. The cases are
structured similarly to the example shown in Sect. 2 and
they originate from several CSV datasets on Kaggle.
The simple case representation (CR-I) has 12 string and
12 numeric attributes where 6 of the numeric attributes
are part of an aggregate object inside the main aggre-
gate case object. The more complex case representa-
tion (CR-II) has 308 string and 408 numeric attributes
where 154 of the numeric attributes are part of an ag-
gregate attribute. Those case representations are chosen
to investigate trends in retrieval time for cases with dif-
ferent representation complexity. Throughout the ex-
periment, we use 5 different case base sizes for each
representation CR-I and CR-II, ranged from 10,000 to
50,000 cases with steps of 10,000 cases. We measure the
retrieval time as the central performance metric. There-
fore, first, an arbitrary query is created for both case
representations CR-I and CR-II. Then, the retrieval
time of each combination of retriever and case base is
measured by executing a retrieval scenario with the re-
spective data. This means that the time of each of the
3 retrievers is measured for each of the 5 case base sizes
for the case representations CR-I and CR-II. To avoid
distortions of individual retrieval times, we repeat each
retrieval 10 times with the same query and take the
average of the resulting values. The GPU retriever GR
uses a case base and query that are allocated on the
GPU memory in an offline phase that does not con-
tribute to the measured time. It is important to note
that the same applies to the CPU where the data is
stored in memory directly. Additionally, we ensure cor-
rect computation results for GR by comparing its com-
puted similarities on an attribute level and a case level
with similarities that are computed on the CPU. All
experiments are conducted on a computer with an Intel
i7 6700 CPU (4 cores, 8 threads) with 48 GB RAM and
an NVIDIA GTX 1080 GPU with 2560 CUDA cores
and 8 GB graphics RAM, running Windows 10 64-bit.
This represents a common configuration for a regular
PC that enables reusing our approach in many fields.

Experimental Results

The most important result of our experiments concerns
a runtime comparison of different retrievers. Figure 5
shows the averaged retrieval durations (vertical axis) of
the evaluated retrievers for differently sized case bases
(horizontal axis) with the simple case representation
CR-I (solid lines) and the more complex case repre-
sentation CR-II (dotted lines). In the diagram, PCR is
depicted as a line with attached rectangles and GR as
a line with attached circles. For reasons of clarity and

©2200 — R

g &PCR -®-GR

§2000 ——cpy

élsoo | -mPCR -@GR -
=600 —3 -— e
Ehat

Qu0o —m L

E 1200

Averaged Retriev.
B
o
o

10000 20000 30000 40000 50000
Case Base Size

Figure 5: Retrieval Times of CPU- and GPU-Based Ap-
proaches for Case Representations CR-I and CR-II.

scale distortions for CR-II, we have not added the signif-
icantly slower SCR in the figure. For a detailed perfor-
mance comparison of SCR with PCR and GR see Tab.
2 instead. It is apparent that PCR shows the longest
retrieval time of the diagram for all case bases of case
representation CR-I. For the same case representation,
GR shows a much shorter retrieval time for all case base
sizes and, thus, outperforms PCR. The results for the
more complex case representation CR-II are very sim-
ilar to those of case representation CR-I: GR outper-
forms PCR across all case bases. However, the retrieval
times for CR-II are in general higher than those of CR-I,
which is caused by the more complex case representa-
tion and the higher number of attributes. The retrieval
times show an average speed-up of GR compared to
SCR and PCR between 2 and 37 times depending on
the retriever and the case representation (see Tab. 1).
With a maximum of 1.3 GB of occupied graphics RAM,
the approach is also efficient in terms of required stor-
age capacity. Due to these results, Hypothesis H1 can
be clearly accepted for all case base sizes of case rep-
resentation CR-I and the more complex representation

CR-IL

Table 1: Comparison of Speed-Up for Case Representa-
tions CR-I and CR-II.

Case Retriever

Representation GR vs. PCR GR vs. SCR PCR vs. SCR
CR-I 2.04 10.98 2.95
CR-II 8.88 37.45 2.89

Since the retrieval scenarios in our experiments only
represent a small number of all possible real-world sce-
narios, it is difficult to foresee how well our approach
scales, especially when regarding larger case bases or
cases with an even higher number of attributes. There-
fore, in addition to measuring the absolute retrieval
times, we investigate the increase of computation time
for all retrievers by comparing retrieval times of equally
sized case bases for the simple case representation CR-
I and for the more complex case representation CR-
IT (see Tab. 2). For instance, the first value from the

left in the row of SCR stems from the rate of time in-
- (1951-72)-100 . .
crease, i.e., ~——————, when comparing the differ-
ence in retrieval time of 10,000 cases structured accord-
ing to CR-I or CR-II. The computed values show by
how much the time increases, relative to the retrieval
time for the simpler case representation CR-I. Since the
number of attributes in the more complex case repre-
sentation CR-II has increased by 2883 % compared to
case representation CR-I, a perfectly proportional rela-
tionship is expressed by an increased relative retrieval
time of 2883 %. In order to generate a single metric to
compare across all retrievers, we averaged the values for
each retriever (see “Avg.” in Tab. 2). The average results

Table 2: Increase of Retrieval Time for a More Complex

Case Base.
. Number of Cases (x1000)
Retriever Avg.
10 20 30 40 50
SCR 2598% 2677% 2436% 2250% 2232% 2439%
PCR 2250% 1644% 2454% 2424% 2839% 2322%

GR 505% 829% 728% 554% T14% 666%

in Tab. 2 show that SCR performs worst with a value
of 2439 %. Increasing the number of attributes seems to
only have a minor scaling effect for SCR. PCR shows an
average value of 2322 %, which shows a slightly higher
scaling effect than SCR. The best value is achieved by
GR with an average increase in retrieval time of 666 %.
This value shows great potential of our approach since a
higher number of attributes and, thus, a computation-
ally more complex problem seems to lead to great scal-
ing effects in retrieval time. The reason for this might
be the GPU’s architecture that is highly specialized for
parallel workloads, i. e., simultaneous similarity compu-
tations of query-case pairs, and large amounts of data,
i.e., computation of local attribute similarities within
a single thread. Furthermore, we observed in our ex-
periments that numeric attributes are processed much
faster on the GPU than on the CPU. For string at-
tributes, the performance gain is smaller but still sig-
nificant. Therefore, we clearly accept Hypothesis H2.

5 Conclusion and Future Work

We presented an approach to accelerate the similarity
assessment during case retrieval in Case-Based Reason-
ing (CBR) by using Graphic Processing Units (GPUs).
The approach allows to use structural, feature vector
based case representations with syntactic and semantic
similarity measures. The acceleration of the retrieval
might also affect other phases of CBR, e.g., the per-
formance of learning adaptation knowledge. In our ex-
perimental evaluation, we measured retrieval times and
could show that the presented approach clearly out-
performs current retrieval techniques that assess the
similarity on the CPU. We prototypically implemented
the GPU-based retrieval in the open-source CBR frame-
work ProCAKE in order that it can be used by others.

In future work, we intend to publish the CUDA core
for integration into other CBR frameworks. Further-
more, the approach should be enhanced to support
more complex case representations that exceed tradi-
tional attribute-value based representations, e.g., se-
mantic graphs (Bergmann and Gil 2014) as cases. Es-
pecially the revealed scaling potential for more complex
case representations (see Hypothesis H2) encourages
the assumption that there are significant performance
gains possible during the complex and NP-hard com-
putations for subgraph matching (see Ontanén 2020).
The use of machine learning frameworks such as Tensor-
Flow? as a computational foundation for further perfor-
mance improvements and more device independence is
considered in future work. The combination of the pre-
sented approach with our already developed techniques
(e. g., Hoffmann et al. 2020) or generally in parallel with
CPU computing promises further enhancements during
case retrieval in CBR systems.

References

Agorgianitis, I.; Kapetanakis, S.; Petridis, M.; and Fish,
A. 2017. Business Process Workflow Monitoring Using
Distributed CBR with GPU Computing. In Proc. of
the 30th Int. FLAIRS Conf., 495-498. AAAI Press.

Amin, K., and et al. 2019. Advanced Similarity Mea-
sures Using Word Embeddings and Siamese Networks
in CBR. In Proc. of the Intell. Syst. Conf., Vol. 2,
volume 1038 of Adv. in Intell. Syst. Comput., 449-462.
Springer.

Bach, K.; Szczepanski, T.; Aamodt, A.; Gundersen,
0. E.; and Mork, P. J. 2016. Case Representation and
Similarity Assessment in the self BACK Decision Sup-
port System. In Proc. of 24th ICCBR 2016, volume
9969 of LNCS, 32-46. Springer.

Bergmann, R., and Gil, Y. 2014. Similarity assessment
and efficient retrieval of semantic workflows. Inf. Syst.
40:115-127.

Bergmann, R.; Grumbach, L.; Malburg, L.; and Zeyen,
C. 2019. ProCAKE: A Process-Oriented Case-Based
Reasoning Framework. In Workshop Proc. of 27th 1C-
CBR 2019, volume 2567, 156-161. CEUR-WS.org.

Bergmann, R., ed. 2002. Faxperience Management:
Foundations, Development Methodology, and Internet-
Based Applications, volume 2432 of LNCS. Springer.

Dalal, S.; Athavale, V.; and Jindal, K. 2011. Case
retrieval optimization of Case-based reasoning through
Knowledge-intensive Similarity measures. Int. J. Com-
put. Appl. 34(3):12-18.

Forbus, K. D.; Gentner, D.; and Law, K. 1995.
MAC/FAC: A Model of Similarity-Based Retrieval.
Cogn. Sci. 19(2):141-205.

2 https://tensorflow.org

Hanney, K., and Keane, M. T. 1997. The Adaptation
Knowledge Bottleneck: How to Ease it by Learning from
Cases. In Case-Based Reason. Res. and Dev., 359-370.
Springer.

Hoffmann, M.; Malburg, L.; Klein, P.; and Bergmann,
R. 2020. Using Siamese Graph Neural Networks for
Similarity-Based Retrieval in Process-Oriented Case-
Based Reasoning. In Proc. of 28th ICCBR 2020, volume
12311 of LNCS, 229-244. Springer.

Keane, M. T., and Kenny, E. M. 2019. How Case-
Based Reasoning Explains Neural Networks: A Theo-
retical Analysis of XAI Using Post-Hoc Explanation-by-
Example from a Survey of ANN-CBR Twin-Systems.
In Proc. of 27th ICCBR 2019, volume 11680 of LNCS,
155-171. Springer.

Kindratenko, V., and Trancoso, P. 2011. Trends
in High-Performance Computing. Comput. Sci. Eng.
13(3):92-95.

Klein, P.; Malburg, L.; and Bergmann, R. 2019.
Learning Workflow Embeddings to Improve the Per-
formance of Similarity-Based Retrieval for Process-
Oriented Case-Based Reasoning. In Proc. of 27th IC-
CBR 2019, 188-203. Springer.

Li, S., and Amenta, N. 2015. Brute-Force k-Nearest
Neighbors Search on the GPU. In Similarity Search and
Applications, volume 9371 of LNCS. Springer. 259-270.
Liang, S.; Liu, Y.; Wang, C.; and Jian, L. 2009.
A CUDA-based parallel implementation of K-nearest
neighbor algorithm. In Int. Conf. on Cyber-Enabled
Distrib. Comput. and Knowl. Discov., 291-296. IEEE.

Nickolls, J.; Buck, I.; Garland, M.; and Skadron, K.
2008. Scalable Parallel Programming with CUDA.
ACM Queue 6(2):40-53.
Nugent, C., and Cunningham, P. 2005. A Case-Based
Explanation System for Black-Box Systems. Artif. In-
tell. Rev. 24(2):163-178.

Nvidia. 2020. CUDA Programming Guide. Version
11.0.

Ontanén, S. 2020. An overview of distance and simi-
larity functions for structured data. Artif. Intell. Rev.
53(7):5309-5351.

Richter, M. M. 1998. Introduction. In Case-Based
Reason. Technol., volume 1400 of LNCS. Springer. 1-
15.

Shi, S.; Wang, Q.; Xu, P.; and Chu, X. 2016.
Benchmarking State-of-the-Art Deep Learning Soft-
ware Tools. In 7th Int. Conf. on Cloud Comput. and
Big Data, 99-104. IEEE.

Yan, Y.; Grossman, M.; and Sarkar, V. 2009. JCUDA:
A Programmer-Friendly Interface for Accelerating Java
Programs with CUDA. In Furo-Par 2009 Parallel Pro-
cess., volume 5704 of LNCS. Springer. 887-899.
Zeyen, C., and Bergmann, R. 2020. A*-based Similar-
ity Assessment of Semantic Graphs. In Proc. of 28th
ICCBR 2020, volume 12311 of LNCS, 17-32. Springer.

