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Abstract

Information provision plays an important role in ed-
ucating patients with serious illnesses, like cancer, to
cope with their disease conditions and to actively partic-
ipate in shared-decision making process. Recent stud-
ies suggest that there is a lack of appropriate educa-
tional resources for such patients, specifically prostate
cancer patients. To address this issue, in this paper, a
Knowledge-based Exploration on-demand article Rec-
ommender System (called KERS) is proposed that can
provide evidence-based information for patients. Rec-
ognizing the fact that exploration is expensive when the
user of the system is a human, the main idea in KERS is
to minimize exploration while achieving the maximum
long-term satisfaction. Therefore, using a knowledge-
base developed by an expert in the field, KERS learns
user interests as quickly as possible and then it ex-
ploits this knowledge to recommend the best articles.
Furthermore, KERS needs no information from users
beforehand and it learns them through interacting with
users. The system will help patients make informed de-
cisions, and at the same time, will reduce the burden
on the healthcare providers. The results of experiments
have confirmed the effectiveness of the proposed system
compared to baseline methods.

1 Introduction
Prostate cancer is the most commonly diagnosed cancer
among Canadian men; one in nine men in Canada are diag-
nosed with prostate cancer in their lifetime1. In 2020, there
will be an estimated 23,300 Canadian men diagnosed with
prostate cancer and 4,200 deaths due to this disease2. Cop-
ing with prostate cancer can be particularly difficult because
the optimal treatment is not clear and treating the disease
can have consequences for a man’s quality of life (Mid-
dleton et al. 1995; Denmeade and Isaacs 2002), includ-
ing urinary incontinence, sexual dysfunction, depression,
and anxiety (Bowler et al. 2019). Accordingly, providing
prostate cancer patients with appropriate educational re-
sources can play an important role in treatment decision
making. Nonetheless, there is a deficiency in the availability
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of high-quality educational resources for prostate cancer pa-
tients compared to other cancer patients (Kassianos, Raats,
and Gage 2016; Bowler et al. 2019).

In cancer care, the provision of information has four pur-
poses, to: 1) prepare patients for their treatment, 2) increase
adherence to therapy, 3) increase their abilities to cope with
the illness, and 4) to promote recovery (Husson, Mols, and
Van de Poll-Franse 2011). Useful information is defined by
providing patients with the kind of information they need
to know, at the time in their disease progression that they
need to know it, by the right source (Rutten et al. 2005). The
benefits of information for cancer patients include increased
satisfaction and involvement in decision making, improved
ability in coping with stressful stages of disease, anxiety
control, and enhanced communication with family members
and clinicians (Rutten et al. 2005).

There is evidence that the satisfaction of prostate cancer
patients has been improved with simple self-management
educational resources, in the form of booklets (Bowler et al.
2019). However, many of these resources have been found to
be too simple/impractical (Balakrishnan et al. 2019), unreli-
able (Alsyouf et al. 2019; Dee and Lee 2019), incomprehen-
sible (Kim et al. 2019), and not personalized (Bowler et al.
2019). Therefore, it seems with more sophisticated educa-
tional resources, there is a chance to better improve the satis-
faction, and perhaps the quality of life, of these patients. We
hypothesize that a recommender system (RS) could be de-
signed to provide prostate cancer patients with useful infor-
mation as a basis for improving their educational resources.

RSs are software tools that help users find items of their
interest. There are two main paradigms toward RSs: collab-
orative filtering (CF) and content-based filtering (CBF). In
CF, which is the foundation of initial RSs (Ricci, Rokach,
and Shapira 2011), the idea is to first find users similar to
the main user, then recommend items liked by these sim-
ilar users to the user. In CBF, items similar to the history
of the user are recommended to the user. However, these
methods are not effective when there is no database with
enough user ratings. Knowledge-base RSs (KBRSs) are a
third paradigm in which recommendations are generated
using a knowledge-base (KB) developed by an expert in
the domain. If appropriately developed, KBRSs can cover
the problems of the two aforementioned methods, including
new user/item (cold start), unreliable recommendations, and



serendipity (Bouraga et al. 2014).
In this paper, we aim at tackling the information provi-

sioning problem for prostate cancer patients through propos-
ing a Knowledge-based, Exploration on-demand article Rec-
ommender System, called KERS. Because exploration is
costly when recommending to human users, the main idea
in KERS is to minimize the exploration while achieving the
maximum satisfaction. To do this, we incorporate a new ex-
ploration vs. exploitation strategy into the KBRS technol-
ogy. More specifically, KERS is composed of two phases:
Exploration and Exploitation. User interests are learned
through Exploration phase with the help of a KB. Then, this
knowledge is used to recommend the best articles to the user
in the Exploitation phase. The performance of KERS is val-
idated through extensive experiments. In general, the con-
tribution of this paper is threefold: 1) KERS is the first RS
designed to cover the information needs of prostate cancer
patients, 2) to our knowledge, this hybrid of KB and learn-
ing ability (balancing exploration vs. exploitation) is new,
and 3) we present a simple, flexible user simulator to evalu-
ate our method offline through a simulation study.

The remaining of this paper is organized as follows. Sec-
tion 2 provides necessary background for this paper. Sec-
tion 3 defines the problem and explains notations used. The
proposed KERS is described in Section 4. The results of ex-
periments are presented in Section 5 and the paper is con-
cluded in Section 6.

2 Background
Since both KBRSs and bandits inspired us in developing
KERS, we provide a quick background for them below.

Knowledge-based Recommender Systems (KBRSs)
KBRSs use the knowledge provided by a human expert
to generate recommendations. Instead of using user rat-
ings to figure out the taste of the user, they rely on deep
knowledge about a topic and explicit user requirements to
come up with the best recommendations (Felfernig et al.
2011). Thus, this type of RSs is a good match for ap-
plications where user ratings on items is scarce. Meth-
ods developed for KBRSs can be generally divided into
case-based and constraint-based approaches (Felfernig et
al. 2011). The idea in both methods is the same; the user
poses his problem or user requirements are collected, re-
pairs are handled when there are discrepancies, and recom-
mendations are made and explained (Bouraga et al. 2014;
Felfernig et al. 2011). The difference is in the way how these
recommendations are generated; while case-based KBRSs
use a similarity metric to match user’s requirements with
items in the KB (Burke 2000; Khan and Hoffmann 2003;
Lee and Lee 2007; Chattopadhyay et al. 2013; Rosa et al.
2018), constraint-based methods rely on pre-defined and
strong rules to match these two (Tsang 1993; Towle and
Quinn 2000; Felfernig et al. 2011).

Bandits
The problem of balancing the exploration vs. exploitation is
typically formulated as a multi-armed bandit (MAB) prob-
lem. In a MAB problem, the agent faces with a choice

among k options and through selecting one choice, it re-
ceives a numerical reward (Sutton and Barto 2018). This
scenario is similar to a situation where a gambler should
decide to play which lever of a slot machine to gain more
payoffs in a series of trials. Algorithms developed to solve
the MAB problem can be generally divided into context-free
and contextual bandit algorithms (Sutton and Barto 2018;
Li et al. 2010). In the former, the agent knows nothing about
the environment (items and users). On the other hand, in
contextual bandits, the agent sees a feature vector of the
environment alongside the history of each arm in order to
select the best arm. Since we are inspired by context-free
bandits in developing KERS, we provide more details about
this type of bandits. ε-greedy is one of the simplest context-
free bandits in which either the best arm with probability
1 − ε or a random arm with probability ε is selected (Sut-
ton and Barto 2018). To address the unguided exploration
by ε-greedy, upper confidence bound (UCB) (Auer, Cesa-
Bianchi, and Fischer 2002) algorithms follow optimism in
the face of uncertainty. More specifically, these algorithms
usually compute a confidence bound for each arm (action)
and then select the arm with the largest bound. In other
words, the less confident they are about an arm, the more
likely they select it. From this family, UCB1 algorithm first
plays each arm once. Then, at time step t, it selects the arm
that maximizes Qt(a) +

√
2 log t/na, where Qt(a) is the

value of arm a at time step t and na is the number of times
that arm a has been played. We compare the performance of
KERS with ε-greedy and UCB1 in Section 5.

In contrast, KERS is a hybrid method of KBRSs and
MABs. On the one hand, it relies on the strength of KBs in
terms of carefully classified information. On the other hand,
it wisely modifies the unguided exploration in MABs and
equips the KBRS with a new learning algorithm.

3 Problem Definition
We assume that KERS runs in a discrete time space, called
time steps, t = 1, 2, 3, ...T , where T is a finite number. There
are M users and N items (articles in our case) in the system
and the problem is to recommend, at time step t, the best
item to the active user. In every time step, the user is pro-
vided with k articles and the system receives the feedback
from the user. Because articles in our KB (K) are carefully
developed and every one of them is about a specific topic,
it is assumed that the title of articles is informative enough
to convey the intent of every article. Thus, to not overwhelm
the users, the system only shows the title of articles, which
is no more than few words. On receiving every recommen-
dation, the user provides a numerical reward (r). In this pa-
per, r is considered to be the click of the user on the title of
an article, which is equivalent to a numerical reward of 1 if
clicked and 0 otherwise. That said, denoting a as an arm and
A as the set of arms, the objective is

max RA(T ), (1)

where RA(T ) =
∑T
t=1

∑k
i=1 rt,ai . That means, the objec-

tive at t is to recommend the best k arms that maximize the
cumulative reward during t = 1, ..., T . In order to be consis-
tent with bandit field’s terminology, arm and article terms



Table 1: Notation Description
Notation Meaning

P User Profile unit
K Knowledge-base
Iu User interests
N Number of items
M Number of users
T Number of time steps
k Number of articles to recommend in a single time step
C Number of categories in the knowledge-base
r Numerical reward
R Cumulative reward in T time steps
a An arm
A The set of arms
η The number of possible user interests
δ The epoch for change in the user interest

are used interchangeably in this paper. Table 1 demonstrates
the notation used in this paper.

4 Methodology
Rationale
In this subsection, we explain the rationale behind our work.
In the MAB field, the agent’s goal is to maximize the to-
tal reward in the long run so it needs exploration besides
exploitation (Sutton and Barto 2018). It is undeniable that
when the user of a system is a human, the exploration
is very costly (Chen et al. 2019). This is mainly because
the human is complex in nature and can become bored so
quickly when recommendations are irrelevant. Therefore,
our first and foremost goal is to use a method that needs
minimum exploration, or better say, that explores when-
ever necessary while achieving the maximum satisfaction in
the long-term. Secondly, it is clear that if the users know
and say what specifically is of their interest, then the rec-
ommendation task becomes very straightforward. However,
in many cases, the users are not clear about their inter-
ests (Beel and Langer 2015). Moreover, the research indi-
cates that the users are too lazy to provide necessary feed-
back on recommendations received (Bai et al. 2019). Ac-
cordingly, we believe that a good recommendation method
should either need no information from the users or be
able to work with implicit feedback. Finally, in the health-
care field, it is of major importance to recommend accurate
and reliable information to patients (Alsyouf et al. 2019;
Dee and Lee 2019). Otherwise, it can have costly conse-
quences. Typically, the best way to recommend the most re-
liable information to the users is to use KBs. Regarding these
facts, we have proposed KERS — a hybrid method that uti-
lizes an on-demand exploration scheme, described below.

Proposed KERS
Fig. 1 illustrates the architecture of KERS, which is com-
posed of two phases: Exploration and Exploitation. In the
Exploration phase, since the idea is to find user interests (i.e.,
topics or categories the user is interested to know about and
indicated by Iu), KERS recommends one random article
from each category. When the user clicks on an article’s title,
the category of that article is added to Iu. User Profile (P)

KERS

Fe
e
d
b
ac
k

KB

Exploration Exploitation

User Profile

Figure 1: The proposed system architecture
unit (see Fig. 1) is responsible to keep the track of users and
their interests by saving their IDs and Iu. It is noteworthy
to mention that if C is larger than k, Exploration might take
a couple of time steps to complete. For instance, if k = 5
and C = 8, Exploration takes two time steps, e.g., t1 and
t2, to complete. At t1, five articles from first five categories
are recommended. At t2, three articles from the remaining
three categories plus two articles from random categories are
recommended (i.e., these two articles could be from any of
eight categories). Note that, at t2, we could only recommend
three articles from the remaining three categories; however,
we aim to preserve the consistency and recommend exactly
k articles at each time step. In the Exploitation phase, KERS
uses P and randomly recommends k articles from Iu. Note
that if |Iu| > 1 for a user, KERS tries to fairly recommend
k articles from all these categories. More specifically, if a
user is interested in η topics, KERS recommends k/η arti-
cles fromC1, k/η fromC2, and so on. If k is not divisible by
η, KERS uses a rounding up method; e.g., if k = 5, η = 2,
and C = 5, it recommends three articles from C1 and two
articles from C2. Overall, in the first time step(s), KERS is
in the Exploration phase and recommends articles from all
categories. Then, when Exploration completes, it switches to
the Exploitation phase and remains there until Iu changes.
KERS detects this change through receiving no reward in
a time step. Once occurred, KERS switches back to Explo-
ration to find out new Iu. This process is repeated until time
step T or when the user quits the system. The pseudo code
of KERS is presented in Algorithm 1.

5 Experiments
In this section, the performance of KERS is validated
through simulation study. First the experiments setup is de-
scribed. Then, the results of experiments are presented.

Setup
Parameters and Baselines In order to investigate the ef-
fect of different values of M on the performance of the sys-
tem, we have picked the following values: 1, 10, and 100. If
M > 1, in every time step, one user is randomly selected
as the active user by the system and he receives the rec-
ommendation. There are 10,000 time steps (T ) and every
experiment is the average over 20 runs. We pick k = 5 to
avoid choice overload (Beierle et al. 2019) and use R as the
performance metric. For performance comparison, ε-greedy



Algorithm 1: KERS algorithm
1 initialization (t = 1, Iu = ∅ , phase = Exploration, exp ctr = 0)
2 while t <= T do
3 if phase = Exploration then
4 recommend {a1, ..., ak} from K
5 if ∃i ∈ {1, ..., k}, rai

= 1 then
6 add Cai

to Iu
7 if user id 6∈ P then
8 add user id and Iu to P
9 end

10 end
11 exp ctr += k
12 if Iu 6= ∅ and exp ctr> C then
13 phase = Exploitation
14 exp ctr = 0

15 end
16 else
17 if user id 6∈ P then
18 phase = Exploration
19 else
20 recommend {a1, ..., ak} from K according to Iu
21 if @i ∈ {1, ..., k}, rai

= 1 then
22 Iu = ∅
23 phase = Exploration

24 end
25 end
26 end
27 t = t+ 1

28 end

and UCB1 are implemented as the baseline algorithms. Al-
though, for the sake of clarity, we only report the results for
ε-greedy when ε = 0.1, KERS outperforms ε-greedy irre-
spective of the value of ε.

Datasets Two datasets are used in our experiments:
prostate cancer and BBC (Greene and Cunningham 2006).
We have developed a dataset with 500 articles (N = 500)
about prostate cancer, which are crawled from prostate can-
cer websites3. The reliability of the content of these web-
sites have been validated by our experts and the level of
information is understandable to a layperson. The articles
are categorized into five groups: pre-diagnosis, diagnosis,
treatment, side effects, and recurrence issues. Our previ-
ous work (Baverstock, Crump, and Carlson 2015) inspired
us for this classification and, with the advice from our ex-
perts, we extended it to five categories, which better re-
flects the current informational needs of prostate cancer pa-
tients observed in clinical communications. To see the per-
formance on a larger dataset, we have also used BBC dataset
in our experiments. The articles in this dataset are catego-
rized into five topics, i.e., business, entertainment, politics,
sport, and technology, and there are 2,225 articles in the
dataset (N =2,225).

User Simulator According to (Zheng et al. 2018), the
user’s interest is dynamic and changes over time. This
change is sporadic and depends on many factors, includ-

3Prostate Cancer Canada, Canadian Cancer Society, Canadian
Urological Association, American Urological Association, and
Wikipedia

ing personality, mood, and time. Accordingly, it is almost
infeasible to exactly model a user. Instead, in this paper,
we present a simple user simulator and use it to evaluate
our method. Basically, the user interest has two main ele-
ments: the number of topics a user might be interested to
know about (η) and the time or duration the user is interested
about them (δ). For example, a patient may be interested in
the topics of diagnosis and treatment, as well as he might
become bored after some time (e.g., 10 minutes) and leave
the platform. Upon returning to use the platform again, he
might become interested in side effects and recurrence is-
sues topics. For simplicity, we assume that these two factors
are fixed in our users. In other words, if η = 2 and δ = 20
time steps for a user, he stays interested in two topics until
t = T , but he might change these two topics every 20 time
steps. We let η ∈ [1, 2, 3] and δ ∈ [10, 20, ... , 100]. That
means, one user may change his interest every 10 time steps
and another one every 20 time steps. With this setting, a user
can stay focused on merely one topic all the time. The sys-
tem assigns η and δ to the users randomly. Note that users
can have similar behaviors; it is quite possible that two users
have similar η and δ.

Results
Prostate cancer dataset Figs. 2(a) to 2(i) show R for the
three algorithms when the values of M and η vary from 1
to 100 and 1 to 3, respectively. In general, KERS outper-
forms the two methods in all settings. This superiority is
more tangible when M and η are smaller. More specifically,
when M = 10 and η = 1, KERS outperforms the base-
line methods by 100% (Fig. 2(d)). The reason of this su-
periority is that KERS finds Iu as quickly as possible and
exploits this knowledge in subsequent time steps. KERS re-
turns to the Exploration phase only if it sees a change in
Iu. While the baseline methods perform greedily in most of
the time, their exploration is not wise enough. UCB1 per-
forms relatively better than ε-greedy when η is smaller (see
Figs. 2(a) and 2(b)). AsM increases, predicting Iu becomes
more difficult and the performance of the three methods di-
minishes accordingly. Whereas KERS achieves almost the
perfect R (i.e., 50,000 after 10,000 time steps) when M = 1
and η ∈ [1, 2, 3], this number becomes about 15,000 when
M = 100 (Figs. 2(g), 2(h), and 2(i)). This is mainly because
when there are more users in the system and their interest
changes after a while, more exploration is required to find
the current interest of users and exploitation becomes inef-
fective. Another observation is that when η increases, R is
better in all methods. This makes sense as when the users
are interested in multiple topics simultaneously, it is easier
to predict their interests compared to when they are inter-
ested in only one topic.

BBC dataset Figs. 2(j) to 2(r) show R for the three al-
gorithms applied to the BBC dataset. Again, KERS outper-
forms the baseline methods in all settings and the same ob-
servations about change in M and η and their effect on the
performance of the algorithms are seen here. The only dif-
ference is that UCB1 performs the worst among the three
algorithms. The reason is that this method should explore
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Figure 2: The cumulative reward for the three algorithms on prostate cancer dataset ((a)-(i)) and BBC dataset ((j)-(r))

and play all arms first and then starts to balance exploration
vs. exploitation. Because there are more arms to explore in
this dataset and users interests also change over time, UCB1
performs the worst.

Finally, Fig. 3 illustrates the number of times each arm in
the BBC dataset is played by each algorithm. To be clear, we
have shown the results when M = 1, δ = T (i.e, the user
interest does not change over time), and η = 1 (the user is in-
terested in the topic of technology). As depicted, both KERS
and UCB1 fairly recommend all articles in this topic. On the
other hand, ε-greedy performs quite poorly in this term as it
greedily recommends a few articles all the time. For exam-
ple, it recommends one article in this topic more than 9,000
times. This clearly shows while ε-greedy performs relatively
better in this dataset in terms of R compared to UCB1, it is
almost impractical for recommending articles to a human.

0 1000 2000

0

20

40

60

80

100

120

140

160

Nu
mb

er o
f tim

es 
pla

yed

KERS

0 1000 2000
Arms

0

2000

4000

6000

8000

-greedy

0 1000 2000

10

20

30

40

50

60

70

80
UCB1

Figure 3: The number of times each arm played by algo-
rithms (M = 1 and η = 1)

Discussion
KERS borrows the advantages of the two methods, i.e.,
KBRSs and MABs, as well as it covers their problems. In
other words, while it is simple and practical, it alleviates the
exploration vs. exploitation problem. At the same time, it
is content (articles’ body text) and dataset size independent

and can provide reliable recommendations. However, as all
knowledge-based systems, one might argue that the perfor-
mance of KERS depends on the accuracy of the KB used
and its performance degrades if the KB is not carefully de-
veloped. This dependence on the KB may also have a detri-
mental effect on the exploration time in case the number of
categories in the KB is very large, although it is rare.

Patients diagnosed with prostate cancer may be asked
by their clinician to share in decisions regarding treatment,
given the inherent trade-offs across the treatment options
associated with adverse quality of life outcomes. To make
informed decisions, these patients may have informational
needs that cannot be fulfilled with conventional resources.
The personalization supplied by KERS could be used to
provide prostate cancer patients with more useful informa-
tion compared to existing educational resources (e.g., patient
pamphlet). This, in turn, could help better inform patients
about prostate cancer, the treatments that are available to
them, and better inform their expectations over the duration
of their care pathway.

6 Conclusion and Future Work
In this paper, we have proposed KERS — a knowledge-
based exploration on-demand RS algorithm for cancer pa-
tients information provisioning. Since exploration is expen-
sive when the user of the system is a human, the main ob-
jective of KERS is to achieve the maximum long-term satis-
faction through minimum exploration. The results of exper-
iments have confirmed the effectiveness of KERS compared
to baseline algorithms.

This paper is a pilot study to initially test the performance
of KERS offline and in a small scale. In the future, we will
investigate the performance of KERS in an online study, i.e.,
using real prostate cancer patients, with a large dataset and
various numbers of categories.
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