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Abstract

The age at which children acquire words is an impor-
tant psycholinguistic property for modeling the growth
of children’s semantic networks. Much work over the
years has explored how to effectively exploit statistical
models to predict the age at which a word will be ac-
quired, ranging from simple linear regression to LSA
and skip-gram. However, thus far no work has explored
whether transformers are any better at modeling word
acquisition, despite the superior performance they have
achieved on a wide variety of natural language process-
ing (NLP) benchmarks. In this paper, we explore using
several transformer models to predict the age of acquisi-
tion norms for several datasets. We evaluate the quality
of our models using various experiments based on prior
work and compare the transformers against two base-
line models. We obtain promising results overall, as
the transformers can outperform the baselines in most
cases.

Introduction
The normative age of acquisition (AoA) of a word is the
age at which the word is typically learned, and is often de-
fined as the age at which 50% of children are said (by care-
takers familiar with them) to be able to understand or pro-
duce the word. Within psycholinguistics, AoA is thought
to be an important variable in predicting the lexical pro-
cessing of words, along with concreteness and affectiveness
(Paivio, Walsh, and Bons 1994; Zevin and Seidenberg 2002;
Kousta et al. 2011). For instance, AoA is thought to affect
how fast words are read (Juhasz 2005), and how fast pic-
tures can be named (Brysbaert and Ellis 2016). AoA and
other psycholinguistic norms provide a powerful data source
for modeling various aspects of human behavior using tech-
niques from NLP. For example, research within psychology
has shown that combining word embeddings with human
judgment ratings can allow us to model human perceptions
related to health behavior and risks (Richie, Zou, and Bhatia
2019).

Early studies on AoA were small in scale, focusing on
a handful of words picked for certain properties they pos-
sessed (Gerhand and Barry 1999). While this design allows

Copyright © 2021by the authors. All rights reserved.

for specific variables to be studied very precisely, it is un-
clear whether the words being examined have properties typ-
ical of all the words in the vocabulary, or rather are special
cases (Brysbaert, Keuleers, and Mandera 2014). The diffi-
culties of gathering AoA norms by hand have led to much
interest in applying distributional models to extrapolate the
AoA of new words. Work in this area has so far focused on
older non-contextual models, especially LSA (Deerwester
et al. 1990), HAL (Lund and Burgess 1996), and skip-gram
(Mikolov et al. 2013). Within the NLP community, however,
these models have been eclipsed by deep contextual models.
Models based on transformers (Vaswani et al. 2017) have
achieved impressive performance on a wide variety of NLP
benchmarks, often surpassing their non-contextual counter-
parts. An interesting question then is whether transformers
can do any better than older distributional models at model-
ing acquisition norms.

In this paper, we investigate using transformers to pre-
dict acquisition norms for English words, using techniques
that have been shown to work well in prior work. We use
BERT (Devlin et al. 2018) and RoBERTa (Liu et al. 2019),
two popular transformers. BERT is probably the most well-
known transformer architecture, as it introduced pre-training
objectives that have become common. RoBERTa uses the
same architecture as BERT but makes various careful op-
timizations to the pre-training strategy that have led to im-
proved performance on various benchmarks. We compare
the transformers against two baselines, one which simply
makes random predictions, and the other which uses a set of
handcrafted features known to correlate highly with AoA.

We perform our experiments using two AoA datasets. The
first is Kuperman’s AoA ratings (Kuperman, Stadthagen-
Gonzalez, and Brysbaert 2012), which contains acquisition
norms for over 30,000 English words. The original dataset
was later expanded to include data from several other stud-
ies (Bird, Franklin, and Howard 2001; Stadthagen-Gonzalez
and Davis 2006; Cortese and Khanna 2008; Schock et al.
2012), bringing the total size up to over 50,000 words. The
second dataset comes from Wordbank (Frank et al. 2017),
which is a database of responses to MacArthur-Bates Com-
municative Development Inventory (CDI) (Fenson 2002)
questionnaires, taken by the caregivers of children around
the world. This is a self-reported form of language profi-
ciency of the child as observed by the caregiver and allows



us to study the AoA of developing children. All code to re-
produce our results can be found on Github.1

Main Contributions: We present an analysis of two pop-
ular transformer models on the task of predicting AoA. To
our knowledge, we are the first to investigate the use of
BERT for predicting AoA and the first to use RoBERTa to
predict any psycholinguistic variable. We find that in the
majority of cases the transformers achieve superior perfor-
mance to the baselines. We hope our work will stimulate
further interest in the use of transformers for predicting psy-
cholinguistic properties.

Related Work
Factors that contribute to word acquisition have been stud-
ied extensively over the years. It has been shown that word
frequency (Steyvers and Tenenbaum 2005), length (Hills et
al. 2009), polysemy (Casas et al. 2018), and part of speech
(Hills et al. 2010) are highly correlated with AoA. Other
work has used techniques from network science to generate
lexical graphs of words and found that associations within
these networks could predict AoA quite well (Stella and
Brede 2016). Inspired by these insights, there has been much
work on modeling AoA using machine learning. Stella
(2019) used a handcrafted set of psycholinguistic features
to train machine learning models to predict AoA. They find
that a logistic regression model achieves up to 72% accuracy
on this task, with the random baseline being 50%. Russo
(2020) similarly uses handcrafted features to train a linear
regression model to predict the AoA of Italian words.

Because children are thought to utilize co-occurrence in-
formation during lexical processing (Chang and Deák 2020),
there has been an interest in using distributional models as
a way to model various linguistic feature norms, including
AoA. Mandera, Keuleers, and Brysbaert (2015) extrapolated
AoA ratings using LSA, HAL, and skip-gram models. They
achieved about 73% correlation with human norms using
the skip-gram model. Mohler et al. (2014) combined a
distributional model with Wordnet (Miller 1998) to create
an algorithm for expanding psycholinguistic datasets in a
semi-supervised fashion. Bestgen and Vincze (2012) used
LSA to estimate several psycholinguistic variables, by pre-
dicting a word’s rating as the average rating of the word’s
k-nearest neighbors in the LSA space. They achieved a
strong correlation for several of the variables tested, though
they do not examine AoA. Kolovou, Iosif, and Potamianos
(2017) used a network-based distributional model to study
how affective word features influence early language devel-
opment. Alhama, Rowland, and Kidd (2020) trained SVD
and skip-gram models on child-directed speech, and evalu-
ate the model’s ability to predict AoA norms. They achieved
a modest and significant correlation on two evaluation tasks.

Collectively, the success of this work indicates that dis-
tributional models are a promising way to model feature
norms. However, very little work so far has used deep con-
textual models for this purpose, despite the great success

1https://github.com/Advancing-Machine-Human-Reasoning-
Lab/modeling-acquisition-norms

they have achieved on NLP tasks. An important exception
is the work by Bhatia and Richie (2020), which fine-tuned
BERT on feature norms (not including AoA) and demon-
strated that the fine-tuned model could predict novel con-
cepts and features quite well. Most interestingly, they in-
vestigated the psychological plausibility of BERT by testing
it on a wide variety of classic psychological experiments.
In fourteen out of a total of sixteen tests, BERT was able
to produce human-like responses to the stimuli in a statisti-
cally reliable fashion. While these experiments alone are not
sufficient to state that BERT is a psychologically plausible
model of human cognition, they do indicate that BERT may
be superior to older distributional models for psycholinguis-
tic applications.

Methodology
We first perform some preprocessing on our datasets. For
Kuperman, we use only the lemmatized version of each
word and drop any duplicate words or words which have no
AoA rating. For Wordbank, we use data for only English-
speaking children and computed the normative AoA of each
word. This is the age at which at least 50% of the respon-
dents could produce the word. In total, we have 600 words in
Wordbank and about 30,000 words in Kuperman after pre-
processing.

We use the Transformers2 implementation of each of our
BERT and RoBERTa models. We use the bert-base, bert-
large, roberta-base and roberta-large community models
from Huggingface.3 These are all the pre-trained models de-
scribed in their respective papers. We take the average of the
activations for the second to last transformer hidden layer of
each token in the input sequence as the word embedding,
giving us a 768-dimensional vector for the base models and
1024 for the large ones. Taking the average ensures that the
word embeddings are always fixed to these lengths, which
is important because some words consist of several words
(for instance “give me five” in Wordbank). Of course, how
to best obtain word vectors from contextual embeddings is
an open question, and future work is planned to examine
how different embedding strategies impact downstream per-
formance.

We compare the transformers against a handcrafted set of
psycholinguistic features known to correlate with AoA:

1. Frequency: How often the word occurs in language. We
use the frequency counts of words in the OpenSubtitles
database (Barbaresi 2014), since it has been shown this
dataset is more suitable for studying psycholinguistic phe-
nomena than other corpora (Brysbaert and New 2009).
For words not present in the data, we set the value to 1.

2. Polysemy: The number of senses a word has. We ob-
tain this by counting the number of synsets of the word
in Wordnet. For words not present in Wordnet, we set the
value to 1.

3. Whether the word is a noun: In the Kuperman norms
this data is already present. For Wordbank since the
2https://github.com/huggingface/transformers
3https://huggingface.co/models



Model bert-base ρ bert-large ρ roberta-base ρ roberta-large ρ baseline ρ bert-base r bert-large r roberta-base r roberta-large r baseline r
Linear 0.53 0.54 0.37 0.41 0.40 0.54 0.55 0.38 0.42 0.44
Ridge 0.53 0.54 0.37 0.45 0.39 0.54 0.55 0.38 0.42 0.44
SGD 0.53 0.45 0.28 0.32 0.40 0.54 0.45 0.28 0.33 0.44
k-NN 0.50 0.48 0.3 0.31 0.53 0.51 0.48 0.3 0.32 0.62

Decision Tree 0.36 0.31 0.18 0.21 0.59 0.37 0.33 0.19 0.21 0.64
SVR 0.53 0.56 0.39 0.42 0.46 0.54 0.58 0.4 0.43 0.53

Table 1: Spearman ρ and Pearson r correlation on Kuperman norms. SGD is linear regression with stochastic gradient descent.
k-NN is k-nearest neighbors regression. All correlations in the table are significant, with p < 0.001. For the random baseline,
we obtain 0.01 correlation on average using both measures, and 95% of the trials have p > 0.05.

dataset is small we manually annotate the word’s part of
speech based on the category it is assigned to (food, toys,
helping verb, etc). In any case where the part of speech
is ambiguous, we set it based on the part of speech of the
majority of the word’s synsets in Wordnet.

4. Length: the number of characters in the word.

We additionally compare all models against a random
baseline, where the predicted label is simply assigned ran-
domly in the range of possible labels for the dataset. In
the following sections, when we say “baseline features” or
“baseline” we are referring to the psycholinguistic features,
and “random baseline” is this random classifier.

Results

Correlation t-statistic p-value
ρ 2.17 < 0.05
r 5.3 < 0.01

Table 2: Results of the t-test on bert-large SVR per valida-
tion correlations and baseline decision tree correlations.

Kuperman Table 1 shows results on the Kuperman
norms. We experimented with a variety of regression mod-
els, all implemented in sci-kit learn (Pedregosa et al. 2011).
We use Pearson (Pearson 1895) and Spearman (Spearman
1961) correlations to measure performance. To ensure sta-
tistical significance we shuffled the dataset and ran 10-fold
cross-validation on all models. The reported correlations are
the mean correlations of these trials for each model. For the
baseline experiments, we first standardized the features by
removing the mean and scaling to unit variance. For any
model which had tuneable hyperparameters, we first ran a
grid search, using a separate validation set held out from the
training set, and used the following settings found to be op-
timal:

• SGD: elasticnet penalty, squared loss, adaptive learning
rate, eta0 = 0.001, alpha = 0.01

• Decision Tree: at least 4 samples per leaf, min impurity
decrease of 0, max depth of 5

• k-NN: number of neighbors equal to 25

• SVR: C = 3.26, epsilon = 0.81

All other hyperparameters are left at their defaults. In the
majority of cases, the transformers either outperform or per-
form just as well as the baseline features. In most cases,

bert-large performs somewhat better than bert-base, which
is to be expected given the larger size of this model. The
same trend holds for the RoBERTa models. However, both
variants perform noticeably worse overall than the BERT
models. The transformers perform much better than the ran-
dom baseline, which only gets very weak correlation using
both measures. For most folds on the random baseline, the
correlation is also not statistically significant.

While the best model is the decision tree using the base-
line features, the difference is small, as bert-large using SVR
comes with 10% of the Pearson correlation and 5% of the
Spearman correlation. To determine whether this difference
in correlation was statistically significant, we performed a
t-test (Sheynin 1995) on the per-fold reported correlations
for the bert-large SVR model and the baseline decision tree
model. We performed this test on the Spearman and Pearson
correlations separately, results are in Table 2. The difference
for Pearson correlation is clearly statistically significant, but
results are less certain for Spearman. While the p-value is
less than 0.05, it comes close to this significance cutoff, as
the exact value is 0.0496. Overall, it appears that the base-
line features are achieving a modestly stronger correlation
than the best transformer model, though the difference is
quite small.

AoA Range Label Count
(0,20] 0 83

(20,25] 1 254
(25,52] 2 263

Table 3: Final Wordbank dataset statistics.

Wordbank For this dataset, we used an evaluation based
on prior work which framed AoA as a classification task
(Stella 2019). We first bin the Wordbank AoA norms into
a set of 3 discrete labels. Table 3 shows the class assign-
ments and the number of examples per class for the result-
ing dataset. Since the large majority of words are acquired
at around 20 to 25 months old, we could not use uniform
ranges for the bins without having classes with an extremely
small number of examples. We therefore manually tuned
the ranges to balance out the number of examples per class
as much as possible, although one class still has less than
half the number of examples as the other two.

We trained various classification algorithms, again using
both the transformers and the baseline features. We used
Matthews correlation (Matthews 1975) to measure perfor-
mance. To address the class imbalance, we weighted the



Figure 1: Isomap projections of all featuresets.

input samples to be inversely proportional to the class fre-
quencies. We use the following hyperparameter settings (all
others are left at their defaults):

Baseline Features:
• Logistic Regression: C = 0.3, L2 penalty, newton-cg

solver
• Decision Tree: Gini impurity, max depth of 200, log2 max

features, use the best split
• SVC: C = 0.2, gamma set to auto, rbf kernel
• KNN: chebyshev distance metric, 15 nearest neighbors

Transformers:
• Logistic Regression: C = 1.0, L2 penalty, sag solver
• Decision Tree: entropy impurity, max depth of 15, log2

max features, use the best split
• SVC: C = 5.0, gamma set to scale, rbf kernel
• KNN: manhattan distance metric, 15 nearest neighbors

Table 4 shows the results of our experiments. We ran 10-
fold cross-validation on all models using the optimal hyper-
parameters, correlations shown are of the average across all
folds. Getting a strong correlation on this dataset is much
more challenging since there are only a few hundred exam-
ples and the class distribution is imbalanced. We obtained
only weak correlation regardless of the configuration. How-
ever, this time bert-large achieves superior performance to
both baselines, getting as high as 0.14 correlation. We again
find that the random baseline achieves very weak correla-
tion, which all transformers can surpass using at least one of
the classification models.

We performed an additional qualitative analysis on this
dataset by projecting both the baseline features and the trans-
former embeddings into a 2-dimensional space using iso-
metric mapping (Tenenbaum, De Silva, and Langford 2000).

Figure 1 shows the resulting clusters for all feature sets,
color-coded by the word’s assigned category in Wordbank.
We experimented with other manifold dimensionality reduc-
tion algorithms but found that isomap gave the most mean-
ingful clusters overall. Even without any task-specific fine-
tuning, bert-base is clearly segmenting the words along se-
mantically meaningful dimensions, as words belonging to
the same category are consistently grouped together. It also
appears that the space is roughly organized by imageabil-
ity, which is defined as how easily “words arouse a sensory
experience”, or in this case how easily the word can be visu-
alized (Dellantonio, Job, and Mulatti 2014). Abstract con-
cepts (actions, descriptive words, connecting words, etc.)
are skewed negative along the x-axis, while concrete con-
cepts (toys, animals, vehicles, etc.) are skewed positive. Pre-
vious work has found that imageability and AoA are at least
moderately correlated with each other (Cortese and Khanna
2007), so if BERT has learned to distinguish words by this
feature that may partially explain the observed performance.
A similar trend is seen in the other transformers, though the
clusters are not always grouped in similar locations. We also
see this trend using the baseline features. However, the clus-
ters are less compact and closer to each other, suggesting
that BERT has learned to distinguish this semantic feature
more effectively.

Conclusion
Age of acquisition is an important psycholinguistic property
known to influence lexical processing. While much work
over the years has studied how distributional models can be
used to model AoA, the most recent advances in NLP are
seldom used. In this paper, we have addressed this deficit by
exploring the use of state-of-the-art transformers to model
AoA. Our results overall are promising, but not sufficient to



Model baseline bert-base bert-large roberta-base roberta-large
Logistic Regression -0.01 -0.01 0.08 0.00 0.05

Decision Tree 0.02 -0.03 0.07 0.01 0.06
SVC 0.07 0.01 0.14 0.03 0.03
KNN 0.01 -0.05 0.08 0.01 0.02

Table 4: Matthews correlation on the Wordbank norms. The random baseline gets -0.05 correlation.

definitively state that transformers are superior to the base-
line psycholinguistic features. On the Kuperman norms, we
were able to achieve better correlation using the transform-
ers for many of the models we tested, but the best performing
model used the baseline features. Our t-test confirmed that
the higher correlation obtained using the baseline features
was statistically significant. Results on Wordbank are also
unclear, while the transformers achieve the highest correla-
tion on this dataset, the best correlation was still quite low.
Not surprisingly, the transformers achieve consistently bet-
ter performance than the random baseline on both datasets,
which suggests they must encode at least some features pre-
dictive of AoA.

We generally observed that the larger versions of the
transformers outperformed their smaller counterparts. This
was expected, since adding more encoder layers and self-
attention heads usually improves a transformer’s predictive
capabilities. However, while RoBERTa is theoretically a su-
perior architecture to BERT, we found that the RoBERTa
models performed consistently worse than BERT. This is
in line with prior work in interpretability which has found
RoBERTa does not always perform better than BERT on di-
agnostic tasks (Talmor et al. 2020). It’s reasonable to think
that not all transformers are equally good at modeling psy-
cholinguistic properties, and these results suggest that BERT
may be a better model for predicting such properties of lan-
guage. We can’t be certain, however, since other properties
(concreteness, affectiveness, etc.) were not examined.

Probably our most interesting results were the visual-
izations of the word embedding spaces. The transformers
clearly showed more meaningful organization of the words
than the baseline features, which makes it more surprising
the transformers could not consistently achieve the highest
correlation. There are several avenues worth exploring in
future work. First, it’s possible that applying dimensionality
reduction to the transformer features before using them for
training may improve the performance of our models. We
also haven’t established how transformers compare against
other common distributional models, especially LSA and
skip-gram. Finally, we haven’t determined whether fine-
tuning the transformers on AoA data can boost downstream
performance. We plan to investigate these possibilities in the
follow-up experiments.
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